1
|
Shigeishi H, Hamada N, Kaneyasu Y, Niitani Y, Takemoto T, Ohta K. Prevalence of oral Capnocytophaga species and their association with dental plaque accumulation and periodontal inflammation in middle‑aged and older people. Biomed Rep 2024; 20:99. [PMID: 38765863 PMCID: PMC11099601 DOI: 10.3892/br.2024.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/29/2024] [Indexed: 05/22/2024] Open
Abstract
Capnocytophaga species are commonly found in human oral microbiome. The aim of the present study was to understand the association of the prevalence of oral Capnocytophaga species with oral hygiene and periodontal inflammation. A total of 136 patients (median age 72 years) who visited the Hiroshima University Hospital (Hiroshima, Japan) between April 2021 and June 2023 were enrolled. Swab samples were obtained from the tongue surface. DNA from Capnocytophaga species (C. ochracea and C. sputigena) was detected by real-time PCR analysis. Dental plaque accumulation was observed to assess the oral hygiene condition of participants. Additionally, clinical periodontal inflammation was assessed with periodontal inflamed surface area (PISA) scores. Clinical confounding factors such as age, sex, lifestyle-related disease, remaining teeth and denture wearing between Capnocytophaga species-positive and -negative groups were adjusted with a propensity score matching method. Mann-Whitney U and χ2 or Fisher's exact test were employed for statistical analysis. The prevalence rate was 67.6% for oral C. ochracea and 83.1% for C. sputigena. C. ochracea-positive participants showed significantly higher plaque control record scores (an indicator of dental plaque accumulation) than C. ochracea-negative participants (P=0.03). Additionally, C. ochracea/C. sputigena dual-positive participants exhibited significantly higher plaque control record and PISA scores than non-dual-positive participants (P=0.01 and P=0.04, respectively). Propensity score matching was conducted in the C. ochracea/C. sputigena dual-positive group and the non-dual-positive group for adjustment of clinical factors, resulting in 51 matched patient pairs. C. ochracea/C. sputigena dual-positive participants had significantly higher plaque control record scores than non-dual-positive participants (P=0.02). The present results suggest that the prevalence of both oral C. ochracea and C. sputigena is associated with poor oral hygiene in middle-aged and older people.
Collapse
Affiliation(s)
- Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Natsuki Hamada
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yoshie Niitani
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Yamaguchi-Kuroda Y, Kikuchi Y, Kokubu E, Ishihara K. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J Oral Microbiol 2023; 15:2165001. [PMID: 36687169 PMCID: PMC9848294 DOI: 10.1080/20002297.2023.2165001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Periodontitis is caused by a dysbiotic shift in the dental plaque microbiome. Fusobacterium nucleatum is involved in the colonization of Porphyromonas gingivalis, which plays a key role in dysbiosis, via coaggregation and synergy with this microorganism. Aim We investigated the effect of diffusible signaling molecules from P. gingivalis ATCC 33277 on F. nucleatum TDC 100 to elucidate the synergistic mechanisms involved in dysbiosis. Methods The two species were cocultured separated with an 0.4-µm membrane in tryptic soy broth, and F. nucleatum gene expression profiles in coculture with P. gingivalis were compared with those in monoculture. Results RNA sequencing revealed 139 genes differentially expressed between the coculture and monoculture. The expression of 52 genes was upregulated, including the coaggregation ligand-coding gene. Eighty-seven genes were downregulated. Gene Ontology analysis indicated enrichment for the glycogen synthesis pathway and a decrease in de novo synthesis of purine and pyrimidine. Conclusion These results indicate that diffusible signaling molecules from P. gingivalis induce metabolic changes in F. nucleatum, including an increase in polysaccharide synthesis and reduction in de novo synthesis of purine and pyrimidine. The metabolic changes may accelerate biofilm formation by F. nucleatum with P. gingivalis. Further, the alterations may represent potential therapeutic targets for preventing dysbiosis.
Collapse
Affiliation(s)
- Yukiko Yamaguchi-Kuroda
- Department of Endodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan,CONTACT Kazuyuki Ishihara Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo101-0061, Japan
| |
Collapse
|
3
|
Vasileva A, Selkova P, Arseniev A, Abramova M, Shcheglova N, Musharova O, Mizgirev I, Artamonova T, Khodorkovskii M, Severinov K, Fedorova I. Characterization of CoCas9 nuclease from Capnocytophaga ochracea. RNA Biol 2023; 20:750-759. [PMID: 37743659 PMCID: PMC10521337 DOI: 10.1080/15476286.2023.2256578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Cas9 nucleases are widely used for genome editing and engineering. Cas9 enzymes encoded by CRISPR-Cas defence systems of various prokaryotic organisms possess different properties such as target site preferences, size, and DNA cleavage efficiency. Here, we biochemically characterized CoCas9 from Capnocytophaga ochracea, a bacterium that inhabits the oral cavity of humans and contributes to plaque formation on teeth. CoCas9 recognizes a novel 5'-NRRWC-3' PAM and efficiently cleaves DNA in vitro. Functional characterization of CoCas9 opens ways for genetic engineering of C. ochracea using its endogenous CRISPR-Cas system. The novel PAM requirement makes CoCas9 potentially useful in genome editing applications.
Collapse
Affiliation(s)
- A. Vasileva
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - P. Selkova
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - A. Arseniev
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - M. Abramova
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - N. Shcheglova
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - O. Musharova
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - I. Mizgirev
- Laboratory of Carcinogenesis and Aging, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - T. Artamonova
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - M. Khodorkovskii
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - K. Severinov
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - I. Fedorova
- Center of Nanobiotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
4
|
Citterio F, Zanotto E, Pellegrini G, Annaratore L, Barbui AM, Dellavia C, Baima G, Romano F, Aimetti M. Comparison of Different Chemical and Mechanical Modalities for Implant Surface Decontamination: Activity against Biofilm and Influence on Cellular Regrowth—An In Vitro Study. Front Surg 2022; 9:886559. [PMID: 36248376 PMCID: PMC9562851 DOI: 10.3389/fsurg.2022.886559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives The aim of this in vitro study was to compare the efficacy of chemical and mechanical methods for decontamination of titanium dental implant surfaces previously infected with polymicrobial biofilms in a model simulating a peri-implant defect. Furthermore, the effect of each decontamination protocol on MG-63 osteoblast-like cells morphology and adhesion to the treated implants was assessed. Background Peri-implantitis is a growing issue in dentistry, and evidence about implant surface decontamination procedures is lacking and inconclusive. Methods A total of 40 previously biofilm-contaminated implants were placed into a custom-made model simulating a peri-implant defect and randomly assigned to five treatment groups: (C) control (no treatment); (AW) air abrasion without any powder; (ESC) air abrasion with powder of erythritol, amorphous silica, and 0.3% chlorhexidine; (HBX) decontamination with a sulfonic/sulfuric acid solution in gel; and (HBX + ESC) a combination of HBX and ESC. Microbiological analysis was performed on five implants per treatment group, and the residual viable bacterial load measured in log 10 CFU/mL was counted for each bacterial strain and for the total number of colonies. The remaining three implants per group and three noncontaminated (NC) implants were used to assess surface biocompatibility using a scanning electron microscope and a backscattered electron microscope after seeding with MG-63 cells. Results A significant decontaminant effect was achieved using HBX or HBX + ESC, while no differences were observed among other groups. The percentage of implant surface covered by adherent MG-63 cells was influenced by the treatment method. Progressive increases in covered surfaces were observed in groups C, AW, ESC, HBX, HBX + ESC, and NC. Conclusions A combination of mechanical and chemical decontamination may provide more predictable results than mechanical cleaning alone.
Collapse
Affiliation(s)
- Filippo Citterio
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
- Correspondence: Filippo Citterio
| | - Elisa Zanotto
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, Turin, Italy
| | - Gaia Pellegrini
- Department of Biomedical Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Annaratore
- Department of Medical Sciences, Pathology Unit, Università degli Studi di Torino, Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
| | - Anna Maria Barbui
- Microbiology and Virology Unit, University Hospital City of Health and Science of Turin, Turin, Italy
| | - Claudia Dellavia
- Department of Biomedical Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, Section of Periodontology, C.I.R. Dental School, Università di Torino, Turin, Italy
| |
Collapse
|
5
|
Zhao T, Chen J, Liu S, Yang J, Wu J, Miao L, Sun W. Transcriptome analysis of Fusobacterium nucleatum reveals differential gene expression patterns in the biofilm versus planktonic cells. Biochem Biophys Res Commun 2022; 593:151-157. [PMID: 35085920 DOI: 10.1016/j.bbrc.2021.11.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
As a chronic infectious disease, periodontitis can cause gum recession, loss of alveolar bone, loosening of teeth, and even loss of teeth. Dental plaque biofilm is the initiating factor for the occurrence and development of periodontitis. Fusobacterium nucleatum (F. nucleatum) plays a vital role in the structure and ecology of dental plaque biofilms. It is a bridge between early and late colonization bacteria in dental plaque. Understanding the molecular mechanism of F. nucleatum during biofilm development is essential to control periodontitis. This study aimed to determine gene expression profiles of the F. nucleatum strain, ATCC 25586, in the planktonic and biofilm phase through RNA-sequencing approach. The results were confirmed by quantitative reverse transcriptase PCR (RT-qPCR). The results clearly illustrate the difference in gene expression of F. nucleatum under planktonic and biofilms. A total of 110 genes were differentially expressed by F. nucleatum in the biofilm state compared with the planktonic state. The 25 upregulated genes in the biofilm state were mainly related to carbohydrate and amino acid metabolism, while the 85 downregulated genes were primarily associated with cell growth, division, and oxidative stress; most of the upregulated genes of F. nucleatum involved in virulence and oral malodor. Furthermore, the transcriptome analysis and antibacterial activity test also identified Lysine might exhibit the antibacterial and antibiofilm activity of F. nucleatum for the first time. These new findings could provide caveats for future studies on the regulation and maintenance of plaque biofilm and the development of biomarkers for periodontitis.
Collapse
Affiliation(s)
- Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiaqi Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Shuai Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
6
|
Kikuchi Y, Okamoto-Shibayama K, Kokubu E, Ishihara K. OxyR inactivation reduces the growth rate and oxidative stress defense in Capnocytophaga ochracea. Anaerobe 2021; 72:102466. [PMID: 34673216 DOI: 10.1016/j.anaerobe.2021.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The human oral cavity harbors several bacteria. Among them, Capnocytophaga ochracea, a facultative anaerobe, is responsible for the early phase of dental plaque formation. In this phase, the tooth surface or tissue is exposed to various oxidative stresses. For colonization in the dental plaque phase, a response by hydrogen peroxide (H2O2)-sensing transcriptional regulators, such as OxyR, may be necessary. However, to date, no study has elucidated the role of OxyR protein in C. ochracea. METHODS Insertional mutagenesis was used to create an oxyR mutant, and gene expression was evaluated by reverse transcription-polymerase chain reaction and quantitative real-time reverse transcription-polymerase chain reaction. Bacterial growth curves were generated by turbidity measurement, and the sensitivity of the oxyR mutant to H2O2 was assessed using the disc diffusion assay. Finally, a two-compartment system was used to assess biofilm formation. RESULTS The oxyR mutant grew slower than the wild-type under anaerobic conditions. The agar diffusion assay revealed that the oxyR mutant had increased sensitivity to H2O2. The transcript levels of oxidative stress defense genes, sod, ahpC, and trx, were lower in the oxyR mutant than in the wild-type strain. The turbidity of C. ochracea, simultaneously co-cultured with Streptococcus gordonii, was lower than that observed under conditions of homotypic growth. Moreover, the percentage decrease in growth of the oxyR mutant was significantly higher than that of the wild-type. CONCLUSIONS These results show that OxyR in C. ochracea regulates adequate in vitro growth and escapes oxidative stress.
Collapse
Affiliation(s)
- Yuichiro Kikuchi
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Kazuko Okamoto-Shibayama
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Eitoyo Kokubu
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
7
|
Fabre S, Malik Y, van De Guchte A, Delgado-Noguera LA, Gitman MR, Nowak MD, Sordillo EM, Hernandez MM, Paniz-Mondolfi AE. Catheter-related bloodstream infection due to biofilm-producing Capnocytophaga sputigena. IDCases 2021; 25:e01231. [PMID: 34377666 PMCID: PMC8329477 DOI: 10.1016/j.idcr.2021.e01231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Capnocytophaga sputigena is a rare pathogen with diverse clinical presentations. We report a case of catheter-related C. sputigena bloodstream infection. C. sputigena clinical isolates can form biofilms in vitro. Biofilm development by Capnocytophaga species may potentiate disease pathogenesis.
Capnocytophaga sputigena is a facultatively-anaerobic bacterium that is part of the human oropharyngeal microflora. Although C. sputigena bacteremia is uncommon, systemic infections have been reported in both immunocompetent and immunocompromised patients. We report a case of catheter-related bloodstream infection by C. sputigena and highlight its enhanced biofilm-forming capacity in vitro.
Collapse
Affiliation(s)
- Shelcie Fabre
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yesha Malik
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adriana van De Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lourdes A Delgado-Noguera
- Infectious Diseases Division, Venezuelan Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Barquisimeto, Lara, 3001, Venezuela.,Instituto de Investigaciones Biomédicas IDB, Barquisimeto, Lara, 3001, Venezuela.,Health Sciences Department, College of Medicine, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, 3001, Venezuela
| | - Melissa R Gitman
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael D Nowak
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emilia M Sordillo
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alberto E Paniz-Mondolfi
- Clinical Microbiology Laboratory, Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
8
|
Genetic and molecular determinants of polymicrobial interactions in Fusobacterium nucleatum. Proc Natl Acad Sci U S A 2021; 118:2006482118. [PMID: 34074747 DOI: 10.1073/pnas.2006482118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A gram-negative colonizer of the oral cavity, Fusobacterium nucleatum not only interacts with many pathogens in the oral microbiome but also has the ability to spread to extraoral sites including placenta and amniotic fluid, promoting preterm birth. To date, however, the molecular mechanism of interspecies interactions-termed coaggregation-by F. nucleatum and how coaggregation affects bacterial virulence remain poorly defined. Here, we employed genome-wide transposon mutagenesis to uncover fusobacterial coaggregation factors, revealing the intertwined function of a two-component signal transduction system (TCS), named CarRS, and a lysine metabolic pathway in regulating the critical coaggregation factor RadD. Transcriptome analysis shows that CarR modulates a large regulon including radD and lysine metabolic genes, such as kamA and kamD, the expression of which are highly up-regulated in the ΔcarR mutant. Significantly, the native culture medium of ΔkamA or ΔkamD mutants builds up abundant amounts of free lysine, which blocks fusobacterial coaggregation with streptococci. Our demonstration that lysine-conjugated beads trap RadD from the membrane lysates suggests that lysine utilizes RadD as its receptor to act as a metabolic inhibitor of coaggregation. Lastly, using a mouse model of preterm birth, we show that fusobacterial virulence is significantly attenuated with the ΔkamA and ΔcarR mutants, in contrast to the enhanced virulence phenotype observed upon diminishing RadD (ΔradD or ΔcarS mutant). Evidently, F. nucleatum employs the TCS CarRS and environmental lysine to modulate RadD-mediated interspecies interaction, virulence, and nutrient acquisition to thrive in the adverse environment of oral biofilms and extraoral sites.
Collapse
|
9
|
Lenartova M, Tesinska B, Janatova T, Hrebicek O, Mysak J, Janata J, Najmanova L. The Oral Microbiome in Periodontal Health. Front Cell Infect Microbiol 2021; 11:629723. [PMID: 33828997 PMCID: PMC8019927 DOI: 10.3389/fcimb.2021.629723] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
The estimation of oral microbiome (OM) taxonomic composition in periodontally healthy individuals can often be biased because the clinically periodontally healthy subjects for evaluation can already experience dysbiosis. Usually, they are included just based on the absence of clinical signs of periodontitis. Additionally, the age of subjects is used to be higher to correspond well with tested groups of patients with chronic periodontitis, a disorder typically associated with aging. However, the dysbiosis of the OM precedes the clinical signs of the disease by many months or even years. The absence of periodontal pockets thus does not necessarily mean also good periodontal health and the obtained image of "healthy OM" can be distorted.To overcome this bias, we taxonomically characterized the OM in almost a hundred young students of dentistry with precise oral hygiene and no signs of periodontal disease. We compared the results with the OM composition of older periodontally healthy individuals and also a group of patients with severe periodontitis (aggressive periodontitis according to former classification system). The clustering analysis revealed not only two compact clearly separated clusters corresponding to each state of health, but also a group of samples forming an overlap between both well-pronounced states. Additionally, in the cluster of periodontally healthy samples, few outliers with atypical OM and two major stomatotypes could be distinguished, differing in the prevalence and relative abundance of two main bacterial genera: Streptococcus and Veillonella. We hypothesize that the two stomatotypes could represent the microbial succession from periodontal health to starting dysbiosis. The old and young periodontally healthy subjects do not cluster separately but a trend of the OM in older subjects to periodontitis is visible. Several bacterial genera were identified to be typically more abundant in older periodontally healthy subjects.
Collapse
Affiliation(s)
- Magdalena Lenartova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Tesinska
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Tatjana Janatova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia.,Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondrej Hrebicek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Mysak
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Jiri Janata
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Institute of Microbiology v. v. i., BIOCEV, Academy of Sciences of the Czech Republic, Vestec, Czechia
| | - Lucie Najmanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Institute of Microbiology v. v. i., BIOCEV, Academy of Sciences of the Czech Republic, Vestec, Czechia
| |
Collapse
|
10
|
ZHANG S, MIRAN W, NARADASU D, GUO S, OKAMOTO A. A Human Pathogen Capnocytophaga Ochracea Exhibits Current Producing Capability. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shu ZHANG
- Interfacial Energy Conversion Group, National Institute for Materials Science
- Section of Infection and Immunity, Norris Comprehensive Cancer Center, University of Southern California
| | - Waheed MIRAN
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Divya NARADASU
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
- Department of Advanced Interdisciplinary Studies, RCAST, Graduate School of Engineering, The University of Tokyo
| | - Siyi GUO
- Interfacial Energy Conversion Group, National Institute for Materials Science
| | - Akihiro OKAMOTO
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
- Center for Sensor and Actuator Material, National Institute for Materials Science
- Graduate School of Chemical Sciences and Engineering, Hokkaido University
| |
Collapse
|
11
|
Horiuchi A, Kokubu E, Warita T, Ishihara K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe 2020; 62:102100. [DOI: 10.1016/j.anaerobe.2019.102100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022]
|
12
|
Teranaka A, Tomiyama K, Ohashi K, Miyake K, Shimizu T, Hamada N, Mukai Y, Hirayama S, Nihei T. Relevance of surface characteristics in the adhesiveness of polymicrobial biofilms to crown restoration materials. J Oral Sci 2018; 60:129-136. [DOI: 10.2334/josnusd.16-0758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ayako Teranaka
- Department of Operative Dentistry, Nihon University School of Dentistry at Matsudo
| | - Kiyoshi Tomiyama
- Division of Cariology and Restorative Dentistry, Department of Oral Function and Restoration, Graduate School of Dentistry, Kanagawa Dental University
| | - Katsura Ohashi
- Division of Clinical Biomaterials, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Kaori Miyake
- Division of Clinical Biomaterials, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Tota Shimizu
- Division of Prosthodontic Dentistry for Function of TMJ and Occlusion, Department of Oral Function and Restoration, Kanagawa Dental University
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Yoshiharu Mukai
- Division of Cariology and Restorative Dentistry, Department of Oral Function and Restoration, Graduate School of Dentistry, Kanagawa Dental University
| | - Satoshi Hirayama
- Department of Operative Dentistry, Nihon University School of Dentistry at Matsudo
| | - Tomotaro Nihei
- Division of Clinical Biomaterials, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| |
Collapse
|
13
|
Involvement of luxS in Biofilm Formation by Capnocytophaga ochracea. PLoS One 2016; 11:e0147114. [PMID: 26800339 PMCID: PMC4723239 DOI: 10.1371/journal.pone.0147114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/29/2015] [Indexed: 11/19/2022] Open
Abstract
Capnocytophaga ochracea is present in the dental plaque biofilm of patients with periodontitis. Biofilm cells change their phenotype through quorum sensing in response to fluctuations in cell-population density. Quorum sensing is mediated by auto-inducers (AIs). AI-2 is involved in intercellular signaling, and production of its distant precursor is catalyzed by LuxS, an enzyme involved in the activated methyl cycle. Our aim was to clarify the role of LuxS in biofilm formation by C. ochracea. Two luxS-deficient mutants, TmAI2 and LKT7, were constructed from C. ochracea ATCC 27872 by homologous recombination. The mutants produced significantly less AI-2 than the wild type. The growth rates of these mutants were similar to that of the wild-type in both undiluted Tryptic soy broth and 0.5 × Tryptic soy broth. However, according to crystal violet staining, they produced significantly less biofilm than the wild type. Confocal laser scanning microscopy and scanning electron microscopy showed that the biofilm of the TmAI2 strain had a rougher structure than that of the wild type. Complementation of TmAI-2 with extrinsic AI-2 from the culture supernatant of wild-type strain did not restore biofilm formation by the TmAI2 strain, but complementation of LKT7 strain with luxS partially restored biofilm formation. These results indicate that LuxS is involved in biofilm formation by C. ochracea, and that the attenuation of biofilm formation by the mutants is likely caused by a defect in the activated methyl cycle rather than by a loss of AI-2.
Collapse
|
14
|
Involvement of the Type IX Secretion System in Capnocytophaga ochracea Gliding Motility and Biofilm Formation. Appl Environ Microbiol 2016; 82:1756-1766. [PMID: 26729712 DOI: 10.1128/aem.03452-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
Capnocytophaga ochracea is a Gram-negative, rod-shaped bacterium that demonstrates gliding motility when cultured on solid agar surfaces. C. ochracea possesses the ability to form biofilms; however, factors involved in biofilm formation by this bacterium are unclear. A type IX secretion system (T9SS) in Flavobacterium johnsoniae was shown to be involved in the transport of proteins (e.g., several adhesins) to the cell surface. Genes orthologous to those encoding T9SS proteins in F. johnsoniae have been identified in the genome of C. ochracea; therefore, the T9SS may be involved in biofilm formation by C. ochracea. Here we constructed three ortholog-deficient C. ochracea mutants lacking sprB (which encodes a gliding motility adhesin) or gldK or sprT (which encode T9SS proteins in F. johnsoniae). Gliding motility was lost in each mutant, suggesting that, in C. ochracea, the proteins encoded by sprB, gldK, and sprT are necessary for gliding motility, and SprB is transported to the cell surface by the T9SS. For the ΔgldK, ΔsprT, and ΔsprB strains, the amounts of crystal violet-associated biofilm, relative to wild-type values, were 49%, 34%, and 65%, respectively, at 48 h. Confocal laser scanning and scanning electron microscopy revealed that the biofilms formed by wild-type C. ochracea were denser and bacterial cells were closer together than in those formed by the mutant strains. Together, these results indicate that proteins exported by the T9SS are key elements of the gliding motility and biofilm formation of C. ochracea.
Collapse
|
15
|
Zeidán-Chuliá F, Keskin M, Könönen E, Uitto VJ, Söderling E, Moreira JCF, Gürsoy UK. Antibacterial and antigelatinolytic effects of Satureja hortensis L. essential oil on epithelial cells exposed to Fusobacterium nucleatum. J Med Food 2014; 18:503-6. [PMID: 24404975 DOI: 10.1089/jmf.2013.0052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present report examined the effects of essential oils (EOs) from Satureja hortensis L. and Salvia fruticosa M. on the viability and outer membrane permeability of the periodontopathogen Fusobacterium nucleatum, a key bacteria in oral biofilms, as well as the inhibition of matrix metalloproteinase (MMP-2 and MMP-9) activities in epithelial cells exposed to such bacteria. Membrane permeability was tested by measuring the N-phenyl-1-naphthylamine uptake and bacterial viability by using the commercially available Live/Dead BacLight kit. In addition, gelatin zymography was performed to analyze the inhibition of F. nucleatum-induced MMP-2 and MMP-9 activities in HaCaT cells. We showed that 5, 10, and 25 μL/mL of Sat. hortensis L. EO decreased the ratio of live/dead bacteria and increased the outer membrane permeability in a range of time from 0 to 5 min. Treatments with 10 and 25 μL/mL of Sal. fruticosa M. also increased the membrane permeability and 5, 10, and 25 μL/mL of both EOs inhibited MMP-2 and MMP-9 activities in keratinocytes induced after exposure of 24 h to F. nucleatum. We conclude that antibacterial and antigelatinolytic activities of Sat. hortensis L. EO have potential for the treatment of periodontal inflammation.
Collapse
Affiliation(s)
- Fares Zeidán-Chuliá
- 1 Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Loozen G, Ozcelik O, Boon N, De Mol A, Schoen C, Quirynen M, Teughels W. Inter-bacterial correlations in subgingival biofilms: a large-scale survey. J Clin Periodontol 2013; 41:1-10. [PMID: 24102517 DOI: 10.1111/jcpe.12167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2013] [Indexed: 11/28/2022]
Abstract
AIM Although the complexity of the oral ecology and the ecological differences between health and disease are well accepted, a clear view on the dynamics in relation to disease is lacking. In this study, the prevalence and abundance of 20 key oral bacteria was assessed in health and disease and more importantly a closer look was given to the inter-bacterial relationships. MATERIALS AND METHODS A blinded microbiological database was analysed in this cross-sectional, retrospective study. The database was constructed based on microbiological analyses of samples from 6308 patients, with gradations of periodontitis (healthy to periodontitis). Data concerning the abundance of 20 oral bacteria and probing pocket depth were provided. RESULTS Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Eubacterium nodatum, Porphyromonas micra and Porphyromonas intermedia showed a clear increase in abundance and prevalence with increasing pocket depth. Correlation matrices illustrated that almost all microorganisms were in one way correlated to other species and most of these correlations were significant. Several beneficial bacteria showed strong correlations with other beneficial bacteria. CONCLUSION Knowledge on bacterial correlations can pave the way for new treatment options focusing on restoring the shifted balance.
Collapse
Affiliation(s)
- Gitte Loozen
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
The effects of stress hormones on growth of selected periodontitis related bacteria. Anaerobe 2013; 24:49-54. [PMID: 24036419 DOI: 10.1016/j.anaerobe.2013.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
The focus of this study was to examine in vitro the effects of stress hormones (catecholamines: epinephrine, norepinephrine, dopamine and hydrocortisone: cortisol) on the growth of four anaerobic species of periodontitis-related bacteria (Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia and Tannerella forsythia) and one facultative anaerobic species (Eikenella corrodens). Bacterial growth was determined by two different methods: fluorescence in situ hybridization (FISH), and the viable count by culture method. To simulate stress, each single strain was grown in a special growth medium with three different concentrations of each hormone, using an anaerobic chamber at 37 °C. Growth of F. nucleatum increased in the presence of all stress hormones. Growth of P. gingivalis was not significantly influenced by any hormone. Growth of P. intermedia and E. corrodens was inhibited by almost all stress hormones tested. Both methods of analysis revealed that the highest concentrations of norepinephrine and cortisol increased the growth of T. forsythia. Different hormones have a different effect on the growth of periodontitis-related bacteria in vitro. It appears that bacterial viability is more strongly influenced than is bacterial metabolic activity. The growth of F. nucleatum particularly and partially of T. forsythia is increased by several stress hormones and may have an additional negative impact on periodontal disease.
Collapse
|
18
|
Zulfiqar M, Yamaguchi T, Sato S, Oho T. OralFusobacterium nucleatumsubsp.polymorphumbinds to human salivary α-amylase. Mol Oral Microbiol 2013; 28:425-34. [DOI: 10.1111/omi.12036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
- M. Zulfiqar
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - T. Yamaguchi
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - S. Sato
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - T. Oho
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| |
Collapse
|
19
|
Piau C, Arvieux C, Bonnaure-Mallet M, Jolivet-Gougeon A. Capnocytophaga spp. involvement in bone infections: a review. Int J Antimicrob Agents 2013; 41:509-15. [PMID: 23642766 DOI: 10.1016/j.ijantimicag.2013.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/06/2013] [Indexed: 10/26/2022]
Abstract
Capnocytophaga are commensal gliding bacteria that are isolated from human and animal oral flora and are responsible for infections both in immunocompromised and immunocompetent hosts. Accumulation of microbial plaque, loss of collagen attachment, and alveolar bone resorption around the tooth can lead to local Capnocytophaga spp. bone infections. These capnophilic bacteria, from oral sources or following domestic animal bites, are also causative agents of bacteraemia and systemic infections as well as osteomyelitis, septic arthritis, and infections on implants and devices. The present literature review describes the main aetiologies of bone infections due to Capnocytophaga spp., the cellular mechanisms involved, methods used for diagnosis, antimicrobial susceptibility, and effective treatments.
Collapse
Affiliation(s)
- Caroline Piau
- Laboratoire de Bactériologie, Rennes University Hospital, rue Henri Le Guilloux, 35043 Rennes, France
| | | | | | | |
Collapse
|