1
|
Mao L, Xu C, Wang X, Gong L, Gao S, Sun Z, Chen Z. Peptoniphilus vaginalis bacteremia in a patient with diabetic foot infection: First reported case and literature review. Diagn Microbiol Infect Dis 2025; 112:116794. [PMID: 40086198 DOI: 10.1016/j.diagmicrobio.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Peptoniphilus vaginalis, a Gram-positive anaerobic coccus, is a recently characterized species within the Peptoniphilus genus. No studies have detailed its features. This report documents the first case of P. vaginalis bloodstream infection in a patient with diabetic foot infection, with a review of existing literature. CASE PRESENTATION A 55-year-old male presented with multiple skin ulcers on both lower extremities and hyperpyrexia. Blood cultures were conducted, and analysis via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed two distinct colony morphologies, namely Peptoniphilus spp. and Staphylococcus epidermidis. Discrepancies between MALDI-TOF MS results and biochemical identification prompted 16S rRNA sequencing, which confirmed P. vaginalis. The patient underwent surgical debridement and received intravenous antibiotics (levofloxacin, linezolid, and ornidazole), resulting in favorable recovery. CONCLUSIONS This is the first report of P. vaginalis bloodstream infection in a patient with diabetic foot infection. It was observed that conventional biochemical identification methods and MALDI-TOF MS technology may not reliably detect P. vaginalis. In the absence of more advanced molecular methods, P. vaginalis could potentially be misidentified as Peptoniphilus harei, even in the previously published literature. Catalase testing may serve as a pragmatic discriminator in resource-limited settings, which required further validation. This underscores the necessity for employing molecular biology techniques to ensure precise diagnosis and optimize treatment strategies.
Collapse
Affiliation(s)
- Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Chao Xu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xueman Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Lu Gong
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Sui Gao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
3
|
Wang H, Yang JL, Chen C, Zheng Y, Chen M, Qi J, Tang S, Zhan XY. Identification of Peptoniphilus vaginalis-Like Bacteria, Peptoniphilus septimus sp. nov., From Blood Cultures in a Cervical Cancer Patient Receiving Chemotherapy: Case and Implications. Front Cell Infect Microbiol 2022; 12:954355. [PMID: 35880078 PMCID: PMC9307962 DOI: 10.3389/fcimb.2022.954355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
A 39-year-old woman with a 3-year human papillomavirus (HPV) 18 infection history was admitted to the hospital for a 16-day history of vaginal bleeding after sex. She was diagnosed with cervical cancer based on the results of the electronic colposcopy, cervical cytology, microscopy, and magnetic resonance imaging (MRI). Then, she received chemotherapy, with paclitaxel 200 mg (day 1), cisplatin 75 mg (day 2), and bevacizumab 700 mg (day 3) twice with an interval of 27 days. During the examination for the diagnosis and treatment, many invasive operations, including removal of intrauterine device, colposcopy, and ureteral dilatation, were done. After that, the patient was discharged and entered the emergency department about 2.5 months later with a loss of consciousness probably caused by septic shock. The patient finally died of multiple organ failure and bacterial infection, although she has received antimicrobial therapy. The blood cultures showed a monobacterial infection with an anaerobic Gram-positive bacterial strain, designated as SAHP1. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–TOF MS) indicated that the patient was infected with Peptoniphilus asaccharolyticus, while molecular analysis and genome-based taxonomy confirmed the infection with a novel Peptoniphilus species that has a close genetic relationship with Peptoniphilus vaginalis and proposed provisionally as Peptoniphilus septimus sp. nov., which may also act as a commensal of the human vagina. Genomic features of SAHP1 have been fully described, and comparative genomic analysis reveals the known prokaryote relative of Peptoniphilus septimus sp. nov. in the genus Peptoniphilus. The invasive operations on the genital tract during the diagnosis and treatment of the patient and the tumor tissue damage and bleeding may have a certain role in the bloodstream infection. This study casts a new light on the Peptoniphilus bacteria and prompts clinicians to include anaerobic blood cultures as part of their blood culture procedures, especially on patients with genital tract tumors. Furthermore, due to the incomplete database and unsatisfying resolution of the MALDI–TOF MS for Peptoniphilus species identification, molecular identification, especially whole-genome sequencing, is required for those initially identified as bacteria belonging to Peptoniphilus in the clinical laboratory.
Collapse
Affiliation(s)
- Huacheng Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jin-Lei Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingming Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junhua Qi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shihuan Tang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Xiao-Yong Zhan,
| |
Collapse
|
4
|
Antimicrobial Susceptibility and Clinical Findings of Anaerobic Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11030351. [PMID: 35326814 PMCID: PMC8944802 DOI: 10.3390/antibiotics11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
|
5
|
Wan X, Wang S, Wang M, Liu J, Zhang Y. Identification of Peptoniphilus harei From Blood Cultures in an Infected Aortic Aneurysm Patient: Case Report and Review Published Literature. Front Cell Infect Microbiol 2022; 11:755225. [PMID: 35004343 PMCID: PMC8730293 DOI: 10.3389/fcimb.2021.755225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Gram-positive anaerobic cocci (GPAC) are a commensal part of human flora but are also opportunistic pathogens. This is possibly the first study to report a case of Peptoniphilus harei bacteremia in an abdominal aortic aneurysm (AAA) patient. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) failed to identify the isolate and molecular analysis confirmed it as P. harei. A comprehensive literature review revealed that P. harei is an emergent pathogen. This study serves as a reminder for practicing clinicians to include anaerobic blood cultures as part of their blood culture procedures; this is particularly important situations with a high level of suspicion of infection factors in some noninfectious diseases, as mentioned in this publication. Clinical microbiologists should be aware that the pathogenic potential of GPAC can be greatly underestimated leading to incorrect diagnosis on using only one method for pathogen identification. Upgradation and correction of the MALDI-TOF MS databases is recommended to provide reliable and rapid identification of GPAC at species level in medical diagnostic microbiology laboratories.
Collapse
Affiliation(s)
- Xue Wan
- Laboratory Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinhua Liu
- Changchun Customs Technology Center, Changchun, China
| | - Yu Zhang
- Laboratory Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Tang S, Prem A, Tjokrosurjo J, Sary M, Van Bel MA, Rodrigues-Hoffmann A, Kavanagh M, Wu G, Van Eden ME, Krumbeck JA. The canine skin and ear microbiome: A comprehensive survey of pathogens implicated in canine skin and ear infections using a novel next-generation-sequencing-based assay. Vet Microbiol 2020; 247:108764. [PMID: 32768216 DOI: 10.1016/j.vetmic.2020.108764] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
This study analyzed the complex bacterial and fungal microbiota of healthy and clinically affected canine ear and skin samples. A total of 589 canine samples were included: 257 ear swab samples (128 healthy vs. 129 clinically affected) and 332 skin swab samples (172 healthy vs. 160 clinically affected) were analyzed using next-generation sequencing (NGS) to determine both relative and absolute abundances of bacteria and fungi present in the samples. This study highlighted the canine microbiota of clinically affected cases was characterized by an overall loss of microbial diversity, high microbial biomass, with overgrowth of certain members of the microbiota. The observed phenotype of these samples was best described by the combination of both relative and absolute microbial abundances. Compared to healthy samples, 78.3% of the clinically affected ear samples had microbial overgrowth; 69.8% bacterial overgrowth, 16.3% fungal overgrowth, and 7.0% had both bacterial and fungal overgrowth. The most important microbial taxa enriched in clinically affected ears were Malassezia pachydermatis, Staphylococcus pseudintermedius, Staphylococcus schleiferi, and a few anaerobic bacteria such as Finegoldia magna, Peptostreptococcus canis, and Porphyromonas cangingivalis. The anaerobic microbes identified here were previously not commonly recognized as pathogens in canine ear infections. Similar observations were found for skin samples, but yeasts and anaerobes were less abundant when compared to clinically affected cases. Results highlighted herein, signify the potential of NGS-based methods for the accurate quantification and identification of bacterial and fungal populations in diagnosing canine skin and ear infections, and highlight the limitations of traditional culture-based testing.
Collapse
Affiliation(s)
- Shuiquan Tang
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Aishani Prem
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | | | - Mony Sary
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Mikayla A Van Bel
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA; Saddleback Animal Hospital, 1082 Bryan Ave, Tustin, CA, 92780, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Aline Rodrigues-Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael Kavanagh
- Saddleback Animal Hospital, 1082 Bryan Ave, Tustin, CA, 92780, USA
| | - Guangxi Wu
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Marc E Van Eden
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Janina A Krumbeck
- MiDOG LLC, 17062 Murphy Ave, Irvine, CA, 92614, USA; Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA, 92614, USA.
| |
Collapse
|
7
|
Weis S, Schwiertz A, Unger MM, Becker A, Faßbender K, Ratering S, Kohl M, Schnell S, Schäfer KH, Egert M. Effect of Parkinson's disease and related medications on the composition of the fecal bacterial microbiota. NPJ Parkinsons Dis 2019; 5:28. [PMID: 31815177 PMCID: PMC6884491 DOI: 10.1038/s41531-019-0100-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. PD patients suffer from gastrointestinal dysfunctions and alterations of the autonomous nervous system, especially its part in the gut wall, i.e., the enteric nervous system (ENS). Such alterations and functional gastrointestinal deficits often occur years before the classical clinical symptoms of PD appear. Until now, only little is known about PD-associated changes in gut microbiota composition and their potential implication in PD development. In order to increase knowledge in this field, fecal samples of 34 PD patients and 25 healthy, age-matched control persons were investigated. Here, the V4 and V5 hypervariable region of bacterial 16S rRNA genes was PCR-amplified and sequenced using an Ion Torrent PGM platform. Within the PD group, we observed a relative decrease in bacterial taxa which are linked to health-promoting, anti-inflammatory, neuroprotective or other beneficial effects on the epithelial barrier, such as Faecalibacterium and Fusicatenibacter. Both taxa were lowered in PD patients with elevated levels of the fecal inflammation marker calprotectin. In addition, we observed an increase in shares of the Clostridiales family XI and their affiliated members in these samples. Finally, we found that the relative abundances of the bacterial genera Peptoniphilus, Finegoldia, Faecalibacterium Fusicatenibacter, Anaerococcus, Bifidobacterium, Enterococcus, and Ruminococcus were significantly influenced by medication with L-dopa and entacapone, respectively. Our data confirm previously reported effects of COMT inhibitors on the fecal microbiota of PD patients and suggest a possible effect of L-dopa medication on the relative abundance of several bacterial genera.
Collapse
Affiliation(s)
- Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | | | - Marcus M. Unger
- Department of Neurology, Saarland University, Homburg, Germany
| | - Anouck Becker
- Department of Neurology, Saarland University, Homburg, Germany
| | - Klaus Faßbender
- Department of Neurology, Saarland University, Homburg, Germany
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Group for Statistics in Biology and Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, ENS Working Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
8
|
Imchen M, Kumavath R, Vaz ABM, Góes-Neto A, Barh D, Ghosh P, Kozyrovska N, Podolich O, Azevedo V. 16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages. Front Microbiol 2019; 10:2103. [PMID: 31616390 PMCID: PMC6764247 DOI: 10.3389/fmicb.2019.02103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022] Open
Abstract
Rice is a major staple food across the globe. Its growth and productivity is highly dependent on the rhizobiome where crosstalk takes place between plant and the microbial community. Such interactions lead to selective enrichment of plant beneficial microbes which ultimately defines the crop health and productivity. In this study, rhizobiome modulation is documented throughout the development of rice plant. Based on 16S rRNA gene affiliation at genus level, abundance, and diversity of plant growth promoting bacteria increased during the growth stages. The observed α diversity and rhizobiome complexity increased significantly (p < 0.05) during plantation. PCoA indicates that different geographical locations shared similar rhizobiome diversity but exerted differential enrichment (p < 0.001). Diversity of enriched genera represented a sigmoid curve and subsequently declined after harvest. A major proportion of dominant enriched genera (p < 0.05, abundance > 0.1%), based on 16S rRNA gene, were plant growth promoting bacteria that produces siderophore, indole-3-acetic acid, aminocyclopropane-1-carboxylic acid, and antimicrobials. Hydrogenotrophic methanogens dominated throughout cultivation. Type I methanotrophs (n = 12) had higher diversity than type II methanotrophs (n = 6). However, the later had significantly higher abundance (p = 0.003). Strong enrichment pattern was also observed in type I methanotrophs being enriched during water logged stages. Ammonia oxidizing Archaea were several folds more abundant than ammonia oxidizing bacteria. K-strategists Nitrosospira and Nitrospira dominated ammonia and nitrite oxidizing bacteria, respectively. The study clarifies the modulation of rhizobiome according to the rice developmental stages, thereby opening up the possibilities of bio-fertilizer treatment based on each cultivation stages.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Ranjith Kumavath
- Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Aline B M Vaz
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics, National Academy of Sciences, Kyiv, Ukraine
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Cobo F, Rodríguez-Granger J, Pérez-Zapata I, Sampedro A, Aliaga L, Navarro-Marí JM. Antimicrobial susceptibility and clinical findings of significant anaerobic bacteria in southern Spain. Anaerobe 2019; 59:49-53. [PMID: 31103531 DOI: 10.1016/j.anaerobe.2019.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
The objectives of this study were to report on the antimicrobial susceptibility of 276 clinically significant anaerobic bacteria belonging to the major genera isolated between May 2017 and November 2018 in a tertiary hospital in Granada (Spain) and to describe key clinical features of the patients. Species identification was performed by MALDI-TOF MS. Antimicrobial susceptibility tests were performed against penicillin, amoxicillin-clavulanic, imipenem, meropenem, moxifloxacin, clindamycin, metronidazole, vancomycin, and piperacillin-tazobactam using the gradient diffusion technique and EUCAST breakpoints (except for moxifloxacin). The most frequent anaerobes were Bacteroides (29.7%; n = 82), Clostridioides difficile (15.9%, n = 44), Prevotella (10.8%, n = 30), and Propionibacterium (10.7%, n = 25). Metronidazole was not universally active against all genera tested, and some isolates showed resistance to this drug. Almost all tested anaerobes were susceptible to carbapenems and amoxicillin-clavulanate except for Clostridioides difficile (resistance rate of 94%) and Bacteroides (19%), respectively. High overall resistance rates to clindamycin were observed, especially for genera Finegoldia (54%), Bacteroides (49%), and Prevotella (40%). Resistance rates to carbapenems and amoxicillin-clavulanate were very low for the majority of tested genera but were high for Clostridioides difficile and Bacteroides spp., respectively. Resistance to clindamycin was very high, especially for Bacteroides, Finegoldia magna, Prevotella and Peptoniphilus. Routine antimicrobial susceptibility testing for anaerobes contributes information on the global situation and allows empirical therapies to be selected in accordance with local data on resistant strains.
Collapse
Affiliation(s)
- Fernando Cobo
- Department of Microbiology and Instituto Biosanitario, Virgen de las Nieves University Hospita, Granada, Spain.
| | - Javier Rodríguez-Granger
- Department of Microbiology and Instituto Biosanitario, Virgen de las Nieves University Hospita, Granada, Spain
| | - Inés Pérez-Zapata
- Department of Microbiology and Instituto Biosanitario, Virgen de las Nieves University Hospita, Granada, Spain
| | - Antonio Sampedro
- Department of Microbiology and Instituto Biosanitario, Virgen de las Nieves University Hospita, Granada, Spain
| | - Luis Aliaga
- Department of Medicine (University of Granada), Granada, Spain
| | - José María Navarro-Marí
- Department of Microbiology and Instituto Biosanitario, Virgen de las Nieves University Hospita, Granada, Spain
| |
Collapse
|
10
|
Cobo F. Lymphocele infection due to Peptoniphilus harei after radical prostatectomy. Med Mal Infect 2017; 48:154-155. [PMID: 29153289 DOI: 10.1016/j.medmal.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- F Cobo
- Department of Microbiology, University Hospital Virgen de las Nieves, Avda Fuerzas Armadas, 2, 18014 Granada, Spain; Instituto Biosanitario de Granada, Avda Fuerzas Armadas, 2, 18014 Granada, Spain.
| |
Collapse
|