1
|
Kozakai T, Nakajima A, Miyazawa K, Sasaki Y, Odamaki T, Katoh T, Fukuma T, Xiao JZ, Suzuki T, Katayama T, Sakanaka M. An improved temperature-sensitive shuttle vector system for scarless gene deletion in human-gut-associated Bifidobacterium species. iScience 2024; 27:111080. [PMID: 39502284 PMCID: PMC11536034 DOI: 10.1016/j.isci.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Bifidobacterium is a prevalent bacterial taxon in the human gut that comprises over 10 (sub)species. Previous studies suggest that these species use evolutionarily distinct strategies for symbiosis with their hosts. However, the underlying species-specific mechanisms remain unclear due to the lack of efficient gene knockout systems applicable across different species. Here, we developed improved temperature-sensitive shuttle vectors by introducing Ser139Trp into the replication protein RepB. We then used temperature-sensitive plasmids to construct a double-crossover-mediated scarless gene deletion system. The system was employed for targeted gene deletion in Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobacterium kashiwanohense, and Bifidobacterium pseudocatenulatum. Deletion of genes involved in capsular polysaccharide biosynthesis, aromatic lactic acid production, and sugar utilization resulted in the expected phenotypic changes in the respective (sub)species. The temperature-sensitive plasmids developed in this study will aid in deciphering the evolutionary traits of the human-gut-associated Bifidobacterium species.
Collapse
Affiliation(s)
- Tomoya Kozakai
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Miyazawa
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Sasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Fukuma
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Jin-zhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Zhang G, He M, Xiao L, Jiao Y, Han J, Li C, Miller MJ, Zhang L. Milk fat globule membrane protects Bifidobacterium longum ssp. infantis ATCC 15697 against bile stress by modifying global transcriptional responses. J Dairy Sci 2024; 107:91-104. [PMID: 37678788 DOI: 10.3168/jds.2023-23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
The milk fat globule membrane (MFGM) can protect probiotic bacteria from bile stress. However, its potential mechanism has not been reported. In this study, the viability, morphology and gene transcriptional response of Bifidobacterium longum ssp. infantis ATCC 15697 (BI_15697) stressed by bile salts with or without MFGM were investigated. It was shown that MFGM alleviated the reduction in BI_15697 population induced by 0.2% porcine bile stress and restored the population to the control levels. MFGM ameliorated the shrunken, fragmented appearance and irregular morphology of BI_15697 and maintained cell integrity disrupted by bile stress. RNA-sequencing results showed that MFGM increased transport of glucose and raffinose and decreased that of branched-chain amino acids (BCAA) in the presence of bile salts. MFGM stimulated the expression of genes involved in the synthesis of raffinose in galactose metabolism and the metabolism of BCAA, suggesting that MFGM stimulated the accumulation of raffinose and BCAA in the presence of bile. In addition, MFGM stimulated the expression of 2 bile efflux transporters under bile stress. Together, the multifactorial response helps BI_15697 excrete bile salts and maintain cellular integrity in response to bile stress. This study proposes a mechanism for the protection of BI_15697 against bile salt stress by MFGM, thereby providing a molecular basis for its application in incorporation of probiotics.
Collapse
Affiliation(s)
- Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxue He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Xiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jianchun Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Ojima MN, Jiang L, Arzamasov AA, Yoshida K, Odamaki T, Xiao J, Nakajima A, Kitaoka M, Hirose J, Urashima T, Katoh T, Gotoh A, van Sinderen D, Rodionov DA, Osterman AL, Sakanaka M, Katayama T. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. THE ISME JOURNAL 2022; 16:2265-2279. [PMID: 35768643 PMCID: PMC9381805 DOI: 10.1038/s41396-022-01270-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022]
Abstract
Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota.
Collapse
Affiliation(s)
- Miriam N Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Jinzhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Junko Hirose
- School of Human Cultures, The University of Shiga Prefecture, Hikone, Shiga, Japan
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, Food Science Building, University College Cork, Cork, Ireland
| | - Dmitry A Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Rupnik M, Kovács KL, Nagaraja TG, Allen-Vercoe E. Anaerobes in the microbiome. Anaerobe 2021; 68:102362. [PMID: 33975719 DOI: 10.1016/j.anaerobe.2021.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Maja Rupnik
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Kornél L Kovács
- Department of Biotechnology and Department of Oral Biology and Experimental Dentistry, University of Szeged, Szeged, Hungary
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|