1
|
Markowska K, Szymanek-Majchrzak K, Pituch H, Majewska A. Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities. Int J Mol Sci 2024; 25:12808. [PMID: 39684519 DOI: 10.3390/ijms252312808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as well as in non-device-related conditions (e.g., inflammatory bowel disease). Within biofilms, bacterial cells communicate by producing and detecting extracellular signals, particularly through specific small signaling molecules known as autoinducers. These quorum-sensing signals are crucial in all steps of biofilm formation: initial adhesion, maturation, and dispersion, triggering gene expression that coordinates bacterial virulence factors, stimulates immune responses in host tissues, and contributes to antibiotic resistance development. Within anaerobic biofilms, bacteria communicate via quorum-sensing molecules such as N-Acyl homoserine lactones (AHLs), autoinducer-2 (AI-2), and antimicrobial molecules (autoinducing peptides, AIPs). To effectively combat pathogenic biofilms, understanding biofilm formation mechanisms and bacterial interactions is essential. The strategy to disrupt quorum sensing, termed quorum quenching, involves methods like inactivating or enzymatically degrading signaling molecules, competing with signaling molecules for binding sites, or noncompetitively binding to receptors, and blocking signal transduction pathways. In this review, we comprehensively analyzed the fundamental molecular mechanisms of quorum sensing in biofilms formed by anaerobic bacteria. We also highlight quorum quenching as a promising strategy to manage bacterial infections associated with anaerobic bacterial biofilms.
Collapse
Affiliation(s)
- Kinga Markowska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Hanna DH, Al-Atmani AK, AlRashidi AA, Shafee EE. Camellia sinensis methanolic leaves extract: Phytochemical analysis and anticancer activity against human liver cancer cells. PLoS One 2024; 19:e0309795. [PMID: 39541389 PMCID: PMC11563400 DOI: 10.1371/journal.pone.0309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The study's primary goal is to ascertain whether there is a relationship between the processed green tea methanolic extract's (GTME) phytochemical components and its potential effectiveness against human liver cancer cells. The GTME's phytochemical composition was identified using gas chromatography-mass spectrometry, and the extract's capacity to lower cellular proliferation and cause apoptosis in HepG2 cancerous liver cell lines was checked. RESULTS The findings of the gas chromatography-mass chromatogram showed that GTME included bioactive antioxidants and anticancer substances. Additionally, utilizing the MTT, comet assay, and acridine assay, GTME revealed a selective cytotoxic impact with a significant IC50 value (27.3 µg/ml) on HepG2 cells without any harmful effects on WI-38 healthy cells. Also, compared to untreated cells, the extract-treated HepG2 cells had an upsurge in the proportion of cells that have undergone apoptosis and displayed a comet nucleus, which is a sign of DNA damage. In addition, HepG2 cells treated with GTME revealed a stop in the G1 phase and sub-G1 apoptotic cells (37.32%) in a flow cytometry analysis. Furthermore, reactive oxygen species were shown to be responsible for HepG2 apoptosis, and the tested extract significantly reduced their levels in the treated cells. Lastly, compared to untreated cells in treated HepG2 cells, GTME significantly changed protein expression levels linked with cell cycle arrest in the G1 phase and apoptosis. CONCLUSION These findings provided information about the processes through which the GTME inhibited the growth of HepG2. Therefore, it has potential as an effective natural therapy for the treatment of human liver cancer. However, to validate these findings, animal models must be used for in vivo studies.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Ahlam K. Al-Atmani
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | | | - E. El. Shafee
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Yu S, Yue Z, Liu Q. Pectinose induces cell cycle arrest in luminal A and triple-negative breast cancer cells by promoting autophagy through activation of the p38 MAPK signaling pathway. BMC Cancer 2024; 24:639. [PMID: 38789954 PMCID: PMC11127404 DOI: 10.1186/s12885-024-12293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. However, Pectinose whether has capability to restrict the proliferation of tumor cells remain unclear. Here, we report that Pectinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was dramatically inhibited by Pectinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of Cyclin A, Cyclin B, p21and p27. Mechanistically, we further identified that Pectinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of Pectinose suppressing on breast cancer cell lines proliferation and cell cycle process. Additionally, Pectinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Taken together, our findings were the first to reveal that Pectinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells,especially in luminal A and triple-negative breast cancer.
Collapse
Affiliation(s)
- Shilong Yu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhaoyi Yue
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qilun Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
4
|
Tang Z, Song H, Qin S, Tian Z, Zhang C, Zhou Y, Cai R, Zhu Y. D-arabinose induces cell cycle arrest by promoting autophagy via p38 MAPK signaling pathway in breast cancer. Sci Rep 2024; 14:11219. [PMID: 38755221 PMCID: PMC11099026 DOI: 10.1038/s41598-024-61309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. We investigated whether D-arabinose has capability to restrict the proliferation of tumor cells and its mechanism. Here, we report that D-arabinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was evaluated by CCK-8 and Colony formation assay. The distribution of cells in cell cycle phases was analyzed by flow cytometry. Cell cycle, autophagy and MAPK signaling related proteins were detected by western blotting. Mouse xenograft model was used to evaluate the efficacy of D-arabinose in vivo. The proliferation of cells was dramatically inhibited by D-arabinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of cell cycle related proteins. Mechanistically, we further identified that D-arabinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of D-arabinose. Additionally, D-arabinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Our findings were the first to reveal that D-arabinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Zhenning Tang
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| | - Hanying Song
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shaojie Qin
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zengjian Tian
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Chaolin Zhang
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yang Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ruizhi Cai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yongzhao Zhu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
5
|
Guo Y, Chen N, Zhao M, Cao B, Zhu F, Guo C, Shi Y, Wang Q, Li Y, Zhang L. D-arabinose acts as antidepressant by activating the ACSS2-PPARγ/TFEB axis and CRTC1 transcription. Pharmacol Res 2024; 202:107136. [PMID: 38460778 DOI: 10.1016/j.phrs.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nuo Chen
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
An SJ, Ha KW, Jun HK, Kim HY, Choi BK. Reduced proinflammatory activity of outer membrane vesicles of Tannerella forsythia treated with quorum sensing inhibitors. Mol Oral Microbiol 2023; 38:71-81. [PMID: 35866308 DOI: 10.1111/omi.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Outer membrane vesicles (OMVs) of bacteria harbor physiologically active molecules, and quorum sensing inhibitors (QSIs) are expected to regulate bacterial virulence. In this study, we analyzed the proinflammatory activity of OMVs of the periodontal pathogen Tannerella forsythia treated with d-arabinose and d-galactose as QSIs, which inhibit the biofilm formation of periodontal pathogens and autoinducer 2 activity. Compared to OMVs of nontreated T. forsythia (TF OMVs), OMVs released from QSI-treated T. forsythia, designated TF ara-OMVs and TF gal-OMVs, showed reduced production of TNF-α, IL-1β, IL-6, and IL-8 in THP-1 monocytes through decreased activation of NF-κB/MAPKs. Using a human NF-κB reporter cell line and bone marrow-derived macrophages from TLR2-/- mice, TF ara-OMVs and TF gal-OMVs showed less activation of TLR2 than TF OMVs. These results demonstrated that QSIs provide a dual advantage against bacterial infection by inhibiting bacterial biofilm formation and generating OMVs with reduced proinflammatory activity.
Collapse
Affiliation(s)
- Sun-Jin An
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Won Ha
- Bone Science R&D Center, Osstem Implant Co., Ltd, Seoul, Republic of Korea
| | - Hye-Kyoung Jun
- Bone Science R&D Center, Osstem Implant Co., Ltd, Seoul, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Polizzi A, Donzella M, Nicolosi G, Santonocito S, Pesce P, Isola G. Drugs for the Quorum Sensing Inhibition of Oral Biofilm: New Frontiers and Insights in the Treatment of Periodontitis. Pharmaceutics 2022; 14:2740. [PMID: 36559234 PMCID: PMC9781207 DOI: 10.3390/pharmaceutics14122740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chemical molecules are used by microorganisms to communicate with each other. Quorum sensing is the mechanism through which microorganisms regulate their population density and activity with chemical signaling. The inhibition of quorum sensing, called quorum quenching, may disrupt oral biofilm formation, which is the main etiological factor of oral diseases, including periodontitis. Periodontitis is a chronic inflammatory disorder of infectious etiology involving the hard and soft periodontal tissues and which is related to various systemic disorders, including cardiovascular diseases, diabetes and obesity. The employment of adjuvant therapies to traditional scaling and root planing is currently being studied to further reduce the impact of periodontitis. In this sense, using antibiotics and antiseptics involves non-negligible risks, such as antibiotic resistance phenomena and hinders the re-establishment of eubiosis. Different quorum sensing signal molecules have been identified in periodontal pathogenic oral bacteria. In this regard, quorum sensing inhibitors are emerging as some interesting solutions for the management of periodontitis. Therefore, the aim of this review is to summarize the current state of knowledge on the mechanisms of quorum sensing signal molecules produced by oral biofilm and to analyze the potential of quorum sensing inhibitors for the management of periodontitis.
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
9
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
11
|
Mechanistic Effects of E-Liquids on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Flavoring Agents. Dent J (Basel) 2022; 10:dj10050085. [PMID: 35621538 PMCID: PMC9139693 DOI: 10.3390/dj10050085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Vaping has become a global health concern. As research continues, more studies are beginning to question the relative safety of E-liquid flavoring additives. The oral cavity is the first site of exposure to E-liquid aerosol, making it critical for investigation. Because of the importance of commensal bacterial biofilms for oral health, we sought to explore the effects of E-liquids ± flavors on the formation and growth of single- and multi-species biofilms and to investigate the mechanism of inhibition. Methods: Quantitative and confocal biofilm analysis, death curves, and colony-forming units (CFU) were evaluated with flavorless and flavored (tobacco, menthol, cinnamon, strawberry, blueberry) E-liquids using four strains of oral commensal bacteria (Streptococcus gordonii, Streptococcus intermedius, Streptococcus mitis, and Streptococcus oralis). Results: All flavoring agents show a dose-dependent inhibition in the growth of single-species and multi-species biofilms. Furthermore, CFUs, death curves, and light microscopy show that flavoring agents have a bactericidal mode of inhibition on the growth of these oral streptococci. Conclusions: These results show that flavored, rather than unflavored, E-liquids are more detrimental to biofilm formation and growth of oral commensal bacteria. Consequently, E-liquid flavorings agents could pose risks to the oral microenvironment, and by extension, to systemic health.
Collapse
|