1
|
Petersen RS, Fijen LM, Levi M, Cohn DM. Hereditary Angioedema: The Clinical Picture of Excessive Contact Activation. Semin Thromb Hemost 2024; 50:978-988. [PMID: 36417927 PMCID: PMC11407848 DOI: 10.1055/s-0042-1758820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hereditary angioedema is a rare, genetic disorder characterized by painful, debilitating and potentially life-threatening angioedema attacks in subcutaneous and submucosal tissue. While usually unpredictable, attacks can be provoked by a variety of triggers including physical injury and certain medication and are often preceded by prodromal symptoms. Hereditary angioedema has a profound influence on the patients' lives. The fundamental cause of hereditary angioedema in almost all patients is a mutation in the SERPING1 gene leading to a deficiency in C1-inhibitor. Subsequently, the contact activation cascade and kallikrein-kinin pathway are insufficiently inhibited, resulting in excessive bradykinin production triggering vascular leakage. While C1-inhibitor is an important regulator of the intrinsic coagulation pathway, fibrinolytic system and complement cascade, patients do not have an increased risk of coagulopathy, autoimmune conditions or immunodeficiency disorders. Hereditary angioedema is diagnosed based on C1-inhibitor level and function. Genetic analysis is only required in rare cases where hereditary angioedema with normal C1-inhibitor is found. In recent years, new, highly specific therapies have greatly improved disease control and angioedema-related quality of life. This article reviews the clinical picture of hereditary angioedema, the underlying pathophysiology, diagnostic process and currently available as well as investigational therapeutic options.
Collapse
Affiliation(s)
- Remy S Petersen
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Lauré M Fijen
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marcel Levi
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Danny M Cohn
- Department of Vascular Medicine, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Humphreys SJ, Whyte CS, Mutch NJ. "Super" SERPINs-A stabilizing force against fibrinolysis in thromboinflammatory conditions. Front Cardiovasc Med 2023; 10:1146833. [PMID: 37153474 PMCID: PMC10155837 DOI: 10.3389/fcvm.2023.1146833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
The superfamily of serine protease inhibitors (SERPINs) are a class of inhibitors that utilise a dynamic conformational change to trap and inhibit their target enzymes. Their powerful nature lends itself well to regulation of complex physiological enzymatic cascades, such as the haemostatic, inflammatory and complement pathways. The SERPINs α2-antiplasmin, plasminogen-activator inhibitor-1, plasminogen-activator inhibitor-2, protease nexin-1, and C1-inhibitor play crucial inhibitory roles in regulation of the fibrinolytic system and inflammation. Elevated levels of these SERPINs are associated with increased risk of thrombotic complications, obesity, type 2 diabetes, and hypertension. Conversely, deficiencies of these SERPINs have been linked to hyperfibrinolysis with bleeding and angioedema. In recent years SERPINs have been implicated in the modulation of the immune response and various thromboinflammatory conditions, such as sepsis and COVID-19. Here, we highlight the current understanding of the physiological role of SERPINs in haemostasis and inflammatory disease progression, with emphasis on the fibrinolytic pathway, and how this becomes dysregulated during disease. Finally, we consider the role of these SERPINs as potential biomarkers of disease progression and therapeutic targets for thromboinflammatory diseases.
Collapse
|
3
|
Grover SP, Mackman N. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Front Cardiovasc Med 2022; 9:878199. [PMID: 35592395 PMCID: PMC9110684 DOI: 10.3389/fcvm.2022.878199] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Appropriate activation of coagulation requires a balance between procoagulant and anticoagulant proteins in blood. Loss in this balance leads to hemorrhage and thrombosis. A number of endogenous anticoagulant proteins, such as antithrombin and heparin cofactor II, are members of the serine protease inhibitor (SERPIN) family. These SERPIN anticoagulants function by forming irreversible inhibitory complexes with target coagulation proteases. Mutations in SERPIN family members, such as antithrombin, can cause hereditary thrombophilias. In addition, low plasma levels of SERPINs have been associated with an increased risk of thrombosis. Here, we review the biological activities of the different anticoagulant SERPINs. We further consider the clinical consequences of SERPIN deficiencies and insights gained from preclinical disease models. Finally, we discuss the potential utility of engineered SERPINs as novel therapies for the treatment of thrombotic pathologies.
Collapse
|
4
|
Karnaukhova E. C1-Inhibitor: Structure, Functional Diversity and Therapeutic Development. Curr Med Chem 2021; 29:467-488. [PMID: 34348603 DOI: 10.2174/0929867328666210804085636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Human C1-Inhibitor (C1INH), also known as C1-esterase inhibitor, is an important multifunctional plasma glycoprotein that is uniquely involved in a regulatory network of complement, contact, coagulation, and fibrinolytic systems. C1INH belongs to a superfamily of serine proteinase inhibitor (serpins) and exhibits its inhibitory activities towards several target proteases of plasmatic cascades, operating as a major anti-inflammatory protein in the circulation. In addition to its inhibitory activities, C1INH is also involved in non-inhibitory interactions with some endogenous proteins, polyanions, cells and infectious agents. While C1INH is essential for multiple physiological processes, it is better known for its deficiency with regards to Hereditary Angioedema (HAE), a rare autosomal dominant disease clinically manifested by recurrent acute attacks of increased vascular permeability and edema. Since the link was first established between functional C1INH deficiency in plasma and HAE in the 1960s, tremendous progress has been made in the biochemical characterization of C1INH and its therapeutic development for replacement therapies in patients with C1INH-dependent HAE. Various C1INH biological activities, recent advances in the HAE-targeted therapies, and availability of C1INH commercial products have prompted intensive investigation of the C1INH potential for treatment of clinical conditions other than HAE. This article provides an updated overview of the structure and biological activities of C1INH, its role in HAE pathogenesis, and recent advances in the research and therapeutic development of C1INH; it also considers some trends for using C1INH therapeutic preparations for applications other than angioedema, from sepsis and endotoxin shock to severe thrombotic complications in COVID-19 patients.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993. United States
| |
Collapse
|
5
|
Affiliation(s)
- Paula J Busse
- From the Division of Clinical Immunology and Allergy, Icahn School of Medicine at Mount Sinai, New York (P.J.B.); and the Department of Medicine, University of California, San Diego, San Diego (S.C.C.)
| | - Sandra C Christiansen
- From the Division of Clinical Immunology and Allergy, Icahn School of Medicine at Mount Sinai, New York (P.J.B.); and the Department of Medicine, University of California, San Diego, San Diego (S.C.C.)
| |
Collapse
|
6
|
Kaplan AP, Pawaskar D, Chiao J. C1 Inhibitor Activity and Angioedema Attacks in Patients with Hereditary Angioedema. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:892-900. [DOI: 10.1016/j.jaip.2019.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022]
|
7
|
Kaplan AP, Maas C. The Search for Biomarkers in Hereditary Angioedema. Front Med (Lausanne) 2017; 4:206. [PMID: 29214154 PMCID: PMC5702621 DOI: 10.3389/fmed.2017.00206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
The unpredictable nature of attacks of tissue swelling in hereditary angioedema requires the identification of reliable biomarkers to monitor disease activity as well as response to therapy. At present, one can assess a C4 level (by ELISA) to assist in diagnosis but neither C4 nor C1 inhibitor levels reflect clinical course or prognosis. We will here review a collection of plasma proteins involved in blood coagulation, fibrinolysis, and innate immunity (Figure 1). A main focus is those proteins that are key to the formation of bradykinin (BK); namely, factor XII, plasma prekallikrein/kallikrein, high-molecular weight kininogen, and BK itself since overproduction of BK is key to the disease. Considerations include new approaches to measurement of active enzymes, ELISA methods that may supersede SDS gel analysis of bond cleavages, and examples of changes outside the BK cascade that may reflect when, where, and how an attack of swelling is initiated. We will discuss their usefulness as biomarker candidates, with pros and cons, and compare the analytical methods that are being developed to measure their levels or activity.
Collapse
Affiliation(s)
- Allen P. Kaplan
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Hofman Z, de Maat S, Hack CE, Maas C. Bradykinin: Inflammatory Product of the Coagulation System. Clin Rev Allergy Immunol 2017; 51:152-61. [PMID: 27122021 PMCID: PMC5025506 DOI: 10.1007/s12016-016-8540-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Episodic and recurrent local cutaneous or mucosal swelling are key features of angioedema. The vasoactive agents histamine and bradykinin are highly implicated as mediators of these swelling attacks. It is challenging to assess the contribution of bradykinin to the clinical expression of angioedema, as accurate biomarkers for the generation of this vasoactive peptide are still lacking. In this review, we will describe the mechanisms that are responsible for bradykinin production in hereditary angioedema (HAE) and the central role that the coagulation factor XII (FXII) plays in it. Evidently, several plasma parameters of coagulation change during attacks of HAE and may prove valuable biomarkers for disease activity. We propose that these changes are secondary to vascular leakage, rather than a direct consequence of FXII activation. Furthermore, biomarkers for fibrinolytic system activation (i.e. plasminogen activation) also change during attacks of HAE. These changes may reflect triggering of the bradykinin-forming mechanisms by plasmin. Finally, multiple lines of evidence suggest that neutrophil activation and mast-cell activation are functionally linked to bradykinin production. We put forward the paradigm that FXII functions as a ‘sensor molecule’ to detect conditions that require bradykinin release via crosstalk with cell-derived enzymes. Understanding the mechanisms that drive bradykinin generation may help to identify angioedema patients that have bradykinin-mediated disease and could benefit from a targeted treatment.
Collapse
Affiliation(s)
- Zonne Hofman
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steven de Maat
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coen Maas
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Abstract
Angioedema, as a distinct disease entity, often becomes a clinical challenge for physicians, because it may cause a life-threatening condition, whereas prompt and accurate laboratory diagnostics may not be available. Although the bedside diagnosis needs to be established based on clinical symptoms and signs, family history, and the therapeutic response, later, laboratory tests are available. Currently, only for five out of the nine different types of angioedema can be diagnosed by laboratory testing, and these occur only in a minority of the patient population. Hereditary angioedema with C1-inhibitor (C1-INH) deficiency type I can be diagnosed by the low C1-INH function and concentration, whereas in type II, C1-INH function is low, but its concentration is normal or even elevated. C1q concentration is normal in both forms. Acquired angioedema with C1-INH deficiency type I is characterized by the low C1-INH function and concentration; however, C1q concentration is also low, and autoantibodies against C1-INH cannot be detected. Complement profile of acquired angioedema with C1-INH deficiency type II is similar to that of type I, but in this form, autoantibodies against C1-INH are present. Hereditary angioedema due to a mutation of the coagulation factor XII can be diagnosed exclusively by mutation analysis of FXII gene. Diagnostic metrics are not available for idiopathic histaminergic acquired angioedema, idiopathic non-histaminergic acquired angioedema, acquired angioedema related to angiotensin-converting enzyme inhibitor, and hereditary angioedema of unknown origin; these angioedemas can be diagnosed by medical and family history, clinical symptoms, and therapeutic response and by excluding the forms previously described. Several potential biomarkers of angioedema are used to date only in research. In the future, they could be utilized into the clinical practice to improve the differential diagnosis, therapy, as well as the prognosis of angioedema.
Collapse
|
10
|
Hofman ZL, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: Local manifestations of a systemic activation process. J Allergy Clin Immunol 2016; 138:359-66. [DOI: 10.1016/j.jaci.2016.02.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
|
11
|
Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent. Clin Rev Allergy Immunol 2016; 51:207-15. [PMID: 27273087 DOI: 10.1007/s12016-016-8555-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.
Collapse
|
12
|
Csuka D, Veszeli N, Imreh É, Zotter Z, Skopál J, Prohászka Z, Varga L, Farkas H. Comprehensive study into the activation of the plasma enzyme systems during attacks of hereditary angioedema due to C1-inhibitor deficiency. Orphanet J Rare Dis 2015; 10:132. [PMID: 26452350 PMCID: PMC4600308 DOI: 10.1186/s13023-015-0351-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
Background The activation of plasma enzyme systems contributes to hereditary angioedema attacks. We aimed to study the activation markers of the fibrinolytic, coagulation, and contact systems in a larger number of paired samples obtained from the same C1-INH-HAE patients in symptom-free periods and during attacks. Methods Eleven parameters (Factors XI, XII, and C1-inhibitor activity; the concentrations of the D-dimer, prothrombin fragments 1 + 2, plasminogen, plasminogen activator inhibitor-1 [PAI-1], thrombin-anti-thrombin III [TAT] complex, fibrinogen) were measured along with prothrombin time and activated partial thromboplastin time (aPTT), using commercial kits. We compared these markers in samples obtained from the same 39 patients during attack-free periods and during 62 edematous episodes. Forty healthy subjects of matching sex and age served as controls. Results Compared with the healthy controls, significantly higher FXI and FXII activity (p = 0.0007, p = 0.005), as well as D-dimer (p < 0.0001), prothrombin fragments 1 + 2 (p < 0.0001), and TAT (p = 0.0303) levels were ascertained in the patients during symptom-free periods. The evaluation of samples from symptom-free periods or obtained during attacks revealed the increase of FXII activity, as well as of the concentration of D-dimer, prothrombin fragments 1 + 2, and TAT during edematous episodes. PAI-1 level, prothrombin time, and aPTT decreased significantly during attacks, compared with symptom-free periods. D-dimer level was significantly higher during multiple- vs. single-site attacks. Conclusions Comparing a large number of paired samples from symptom-free periods or from edematous episodes allowed accurate appraisal of the changes occurring during attacks. Moreover, our study pointed out that individual episodes may be characterized by different marker patterns.
Collapse
Affiliation(s)
- Dorottya Csuka
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| | - Nóra Veszeli
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| | - Éva Imreh
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| | - Zsuzsanna Zotter
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| | - Judit Skopál
- Department of Cardiology, Heart & Vascular Center, Semmelweis University, Budapest, Hungary.
| | - Zoltán Prohászka
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| | - Lilian Varga
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| | - Henriette Farkas
- 3rd Department of Internal Medicine, Semmelweis University, Faculty of Medicine, Kútvölgyi út 4, H-1125, Budapest, Hungary.
| |
Collapse
|
13
|
Joseph K, Tholanikunnel BG, Wolf B, Bork K, Kaplan AP. Deficiency of plasminogen activator inhibitor 2 in plasma of patients with hereditary angioedema with normal C1 inhibitor levels. J Allergy Clin Immunol 2015; 137:1822-1829.e1. [PMID: 26395818 DOI: 10.1016/j.jaci.2015.07.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hereditary angioedema with normal C1 inhibitor levels (HAE-N) is associated with a Factor XII mutation in 30% of subjects; however, the role of this mutation in the pathogenesis of angioedema is unclear. OBJECTIVE We sought evidence of abnormalities in the pathways of bradykinin formation and bradykinin degradation in the plasma of patients with HAE-N both with and without the mutation. METHODS Bradykinin was added to plasma, and its rate of degradation was measured by using ELISA. Plasma autoactivation was assessed by using a chromogenic assay of kallikrein formation. Plasminogen activator inhibitors (PAIs) 1 and 2 were also measured by means of ELISA. RESULTS PAI-1 levels varied from 0.1 to 4.5 ng/mL (mean, 2.4 ng/mL) in 23 control subjects, from 0.0 to 2 ng/mL (mean, 0.54 ng/mL) in patients with HAE-N with a Factor XII mutation (12 samples), and from 0.0 to 3.7 ng/mL (mean, 1.03 ng/mL) in patients with HAE-N without a Factor XII mutation (11 samples). PAI-2 levels varied from 25 to 87 ng/mL (mean, 53.8 ng/mL) in control subjects and were 0 to 25 ng/mL (mean, 4.3 ng/mL) in patients with HAE-N with or without the Factor XII mutation. Autoactivation at a 1:2 dilution was abnormally high in 8 of 17 patients with HAE-N (4 in each subcategory) and could be corrected by supplemental C1 inhibitor in 4 of them. Bradykinin degradation was markedly abnormal in 1 of 23 patients with HAE-N and normal in the remaining 22 patients. CONCLUSIONS Bradykinin degradation was normal in all but 1 of 23 patients with HAE-N studied. By contrast, there was a marked abnormality in PAI-2 levels in patients with HAE-N that is not seen in patients with C1 inhibitor deficiency. PAI-1 levels varied considerably, but a statistically significant difference was not seen. A link between excessive fibrinolysis and bradykinin generation that is estrogen dependent is suggested.
Collapse
Affiliation(s)
- Kusumam Joseph
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC.
| | - Baby G Tholanikunnel
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Konrad Bork
- Department of Dermatology, Johannes Gutenberg University, Mainz, Germany
| | - Allen P Kaplan
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
14
|
Suffritti C, Zanichelli A, Maggioni L, Bonanni E, Cugno M, Cicardi M. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy 2014; 44:1503-14. [DOI: 10.1111/cea.12293] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C. Suffritti
- Department of Biomedical and Clinical Sciences Luigi Sacco; University of Milan, Ospedale Luigi Sacco; Milan Italy
| | - A. Zanichelli
- Department of Biomedical and Clinical Sciences Luigi Sacco; University of Milan, Ospedale Luigi Sacco; Milan Italy
| | - L. Maggioni
- Department of Biomedical and Clinical Sciences Luigi Sacco; University of Milan, Ospedale Luigi Sacco; Milan Italy
| | - E. Bonanni
- Department of Biomedical and Clinical Sciences Luigi Sacco; University of Milan, Ospedale Luigi Sacco; Milan Italy
| | - M. Cugno
- Department of Internal Medicine; IRCCS Fondazione Ospedale Maggiore Policlinico Mangiagalli Regina Elena; University of Milan; Milan Italy
| | - M. Cicardi
- Department of Biomedical and Clinical Sciences Luigi Sacco; University of Milan, Ospedale Luigi Sacco; Milan Italy
| |
Collapse
|
15
|
Bork K. Pasteurized and nanofiltered, plasma-derived C1 esterase inhibitor concentrate for the treatment of hereditary angioedema. Immunotherapy 2014; 6:533-51. [DOI: 10.2217/imt.14.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Nanofiltered human C1 inhibitor concentrate (Cinryze®): a guide to its use in hereditary angioedema in the EU. DRUGS & THERAPY PERSPECTIVES 2013. [DOI: 10.1007/s40267-013-0061-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
van Geffen M, Cugno M, Lap P, Loof A, Cicardi M, van Heerde W. Alterations of coagulation and fibrinolysis in patients with angioedema due to C1-inhibitor deficiency. Clin Exp Immunol 2012; 167:472-8. [PMID: 22288590 DOI: 10.1111/j.1365-2249.2011.04541.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Patients with functional deficiency of C1-inhibitor (C1-INH) suffer from recurrent acute attacks (AA) of localized oedema associated with activation of the contact system, complement and fibrinolysis. To unravel further the role of coagulation and fibrinolysis in the pathophysiology of C1-INH deficiency, we performed simultaneous thrombin and plasmin generation measurements in plasma from patients with hereditary angioedema (HAE) due to C1-INH deficiency during AA (n = 23), in remission (R) (n = 20) and in controls (n = 20). During AA thrombin generation after in-vitro activation of plasma was higher than in controls, as demonstrated by shorter thrombin peak-time (P < 0·05), higher thrombin peak-height (P < 0·001) and increased area under the curve (AUC) (P < 0·05). Additionally, elevated levels of prothrombin fragment 1+2 (P < 0·0001) were observed in non-activated plasma from the same patients. In contrast, in activated plasma from patients during AA plasmin generation estimated as plasmin peak-height (P < 0·05) and plasmin potential (P < 0·05) was reduced, but non-activated plasma of the same patients showed elevated plasmin-anti-plasmin (PAP) complexes (P < 0·001). This apparent discrepancy can be reconciled by elevated soluble thrombomodulin (sTM) (P < 0·01) and thrombin activatable fibrinolysis inhibitor (TAFI) in patients during AA providing possible evidence for a regulatory effect on fibrinolysis. Plasminogen activator inhibitor-1 (PAI-1) was reduced in patients during AA indicating, together with the observed reduction of plasmin generation, the consumption of fibrinolytic factors. In conclusion, our results support the involvement of coagulation and fibrinolysis in the pathophysiology of HAE and show the possible application of simultaneous measurement of thrombin and plasmin generation to evaluate different clinical conditions in HAE patients.
Collapse
Affiliation(s)
- M van Geffen
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Hack CE, Relan A, van Amersfoort ES, Cicardi M. Target levels of functional C1-inhibitor in hereditary angioedema. Allergy 2012; 67:123-30. [PMID: 21923668 DOI: 10.1111/j.1398-9995.2011.02716.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) is a heterozygous deficiency of first component of complement-inhibitor (C1INH). Insufficient C1INH activity leads to uncontrolled activation of plasma cascade systems, which results in acute angioedema attacks in patients with HAE. Plasma-derived or recombinant C1INH products are approved for the treatment of such angioedema attacks. The target level of C1INH activity needed to achieve optimal efficacy, however, remains unknown. We determined the plasma level of C1INH associated with optimal clinical efficacy in the treatment of angioedema attacks. METHODS Efficacy and pharmacokinetic data were reviewed from recently published placebo-controlled randomized trials in the treatment of HAE with either plasma-derived or recombinant C1INH products, tested at various doses. RESULTS A dose-dependent effect was observed on time to the beginning of relief of symptoms, on time to resolution of symptoms, and on the response rate within 4 h. Optimal efficacy of C1INH therapy is achieved at doses ≥50 U/kg. This dose increases plasma C1INH activity in almost all patients to values ≥0.7 U/ml (70% of normal), the lower limit of the normal range. The differences in half-lives of the various C1INH products do not have an obvious effect on clinical efficacy. CONCLUSION A review of the efficacy and pharmacokinetic data from recently published controlled studies in the treatment of HAE attacks suggests that efficacy of C1INH therapy is optimal when C1INH activity levels are restored to the normal range.
Collapse
Affiliation(s)
- C E Hack
- Department of Dermatology/Allergology, Rheumatology and Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
19
|
|
20
|
Csuka D, Füst G, Farkas H, Varga L. Parameters of the classical complement pathway predict disease severity in hereditary angioedema. Clin Immunol 2011; 139:85-93. [DOI: 10.1016/j.clim.2011.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 01/10/2011] [Indexed: 11/26/2022]
|