1
|
Musa I, Rotaru-Zavaleanu AD, Sfredel V, Aldea M, Gresita A, Glavan DG. Post-Stroke Recovery: A Review of Hydrogel-Based Phytochemical Delivery Systems. Gels 2025; 11:260. [PMID: 40277696 PMCID: PMC12027092 DOI: 10.3390/gels11040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Stroke remains a leading cause of disability worldwide, underscoring the urgent need for novel and innovative therapeutic strategies to enhance neuroprotection, support regeneration, and improve functional recovery. Previous research has shown that phytochemicals such as curcumin, tannic acid, gallic acid, ginsenosides, resveratrol, and isorhamnetin display extensive neuroprotective properties, including antioxidant, anti-inflammatory, and anti-apoptotic effects. These natural compounds could also promote neurogenesis, angiogenesis, and the preservation of the blood-brain barrier. Despite their promising bioactivities, clinical application is often limited by poor solubility, bioavailability, and suboptimal pharmacokinetics. Hydrogels offer a promising solution by encapsulating and controlling the gradual release of these phytochemicals directly at the site of injury. Recent advancements in hydrogel formulations, constructed from biopolymers and functionalized using nanotechnological approaches, could significantly improve the solubility, stability, and targeted delivery of phytochemicals. Controlled release profiles from pH-sensitive and environment-responsive hydrogels could ensure that the compounds' therapeutic effects are optimally timed with individual and critical stages of post-stroke repair. Moreover, hydrogel scaffolds with tailored material properties and biocompatibility can create a favorable microenvironment, reducing secondary inflammation, enhancing tissue regeneration, and potentially improving functional and cognitive outcomes following stroke. This review explores the potential of integrating phytochemicals within hydrogel-based delivery systems specifically designed for post-stroke recovery. The design and synthesis of biocompatible, biodegradable hydrogels functionalized especially with phytochemicals and their applications are also discussed. Lastly, we emphasize the need for additional robust and translatable preclinical studies.
Collapse
Affiliation(s)
- Irina Musa
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.); (D.G.G.)
- Doctoral School, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Alexandra Daniela Rotaru-Zavaleanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.R.-Z.); (A.G.)
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Veronica Sfredel
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.R.-Z.); (A.G.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.); (D.G.G.)
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.R.-Z.); (A.G.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Daniela Gabriela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.); (D.G.G.)
| |
Collapse
|
2
|
Elbaz U, Berliner O, Tabo S, Yeshayahu S, Kesner R, Cohen‐Gerassi D, Adler‐Abramovich L, Halperin‐Sternfeld M, Aviv M. In Vitro Evaluation of a Semi-Autologous Fibrin Sealant for Surgical Applications. Macromol Biosci 2025; 25:e2400165. [PMID: 39973579 PMCID: PMC11995841 DOI: 10.1002/mabi.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 01/31/2025] [Indexed: 02/21/2025]
Abstract
Surgical success relies on precise tissue approximation using sutures, clips, or staples. Fibrin sealant provides a user-friendly alternative, saving time and maintaining tissue integrity. Yet, its cost and potential bioburden risk are notable drawbacks. To address these concerns, a semi-autologous fibrin sealant is produced from human cryoprecipitate and compared it to a commercial fibrin sealant. The microstructure of the semi-autologous sealant closely resembles the commercial one. Initially, the commercial sealant has superior bonding strength, however, over time, both demonstrate strong adhesive properties. Moreover, when the two sealants contain equivalent fibrinogen concentrations, they show similar bonding strength and rheological properties, including thixotropic behavior, which is essential for their application as bioadhesives. Notably, it is discovered that the mechanical properties of the adhesive are mainly governed by the fibrinogen concentration, with minimal impact of other blood components. This understanding paves the way for the development of an efficient method to boost fibrinogen in blood without extensive separation. This study indicates semi-autologous fibrin glue matches commercial sealant in adhesive properties. This may offer several advantages, such as reduced bioburden, costs, improved immunomodulation, and reduced hypersensitivity and virus transmission risks. These findings hold promising prospects for enhancing the wound healing process in various medical conditions.
Collapse
Affiliation(s)
- Uri Elbaz
- Ophthalmology DivisionRabin Medical CenterPetah‐Tikva4941492Israel
- Ophthalmology ClinicSchneider Children's Medical Center of IsraelPetah Tikva4920235Israel
- School of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Ori Berliner
- Ophthalmology DivisionRabin Medical CenterPetah‐Tikva4941492Israel
- Ophthalmology ClinicSchneider Children's Medical Center of IsraelPetah Tikva4920235Israel
- School of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Shavit Tabo
- School of Medical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| | - Shani Yeshayahu
- School of Medical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| | - Reut Kesner
- School of Medical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| | - Dana Cohen‐Gerassi
- Department of Materials Science and EngineeringIby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel Aviv6997801Israel
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
| | - Lihi Adler‐Abramovich
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
| | - Michal Halperin‐Sternfeld
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
- Department of PeriodontologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Moran Aviv
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
- School of Mechanical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| |
Collapse
|
3
|
Jordan J, Levy JH, Gonzalez-Estrada A. Perioperative anaphylaxis: updates on pathophysiology. Curr Opin Allergy Clin Immunol 2024; 24:183-188. [PMID: 38743470 DOI: 10.1097/aci.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PURPOSE OF REVIEW Perioperative anaphylaxis has historically been attributed to IgE/FcεRI-mediated reactions; there is now recognition of allergic and nonallergic triggers encompassing various reactions beyond IgE-mediated responses. This review aims to present recent advancements in knowledge regarding the mechanisms and pathophysiology of perioperative anaphylaxis. RECENT FINDINGS Emerging evidence highlights the role of the mast-cell related G-coupled protein receptor X2 pathway in direct mast cell degranulation, shedding light on previously unknown mechanisms. This pathway, alongside traditional IgE/FcεRI-mediated reactions, contributes to the complex nature of anaphylactic reactions. Investigations into the microbiota-anaphylaxis connection are ongoing, with potential implications for future treatment strategies. While serum tryptase levels serve as mast cell activation indicators, identifying triggers remains challenging. A range of mediators have been associated with anaphylaxis, including vasoactive peptides, proteases, lipid molecules, cytokines, chemokines, interleukins, complement components, and coagulation factors. SUMMARY Further understanding of clinical endotypes and the microenvironment where anaphylactic reactions unfold is essential for standardizing mediator testing and characterization in perioperative anaphylaxis. Ongoing research aims to elucidate the mechanisms, pathways, and mediators involved across multiple organ systems, including the cardiovascular, respiratory, and integumentary systems, which will be crucial for improving patient outcomes.
Collapse
Affiliation(s)
- Justin Jordan
- TMC Health Medical Education Program, Tucson, Arizona
| | - Jerrold H Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| | | |
Collapse
|
4
|
Xie B, Xie H. Application of stimuli-responsive hydrogel in brain disease treatment. Front Bioeng Biotechnol 2024; 12:1450267. [PMID: 39091971 PMCID: PMC11291207 DOI: 10.3389/fbioe.2024.1450267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Treating brain diseases presents significant challenges due to neuronal degeneration, inflammation, and the intricate nature of the brain. Stimuli-responsive hydrogels, designed to closely resemble the brain's extracellular matrix, have emerged as promising candidates for controlled drug delivery and tissue engineering. These hydrogels have the unique ability to encapsulate therapeutic agents and release them in a controlled manner when triggered by environmental stimuli. This property makes them particularly suitable for delivering drugs precisely to targeted areas of the brain, while minimizing collateral damage to healthy tissue. Their preclinical success in treating various brain diseases in animal studies underscores their translational potential for human brain disease treatment. However, a deeper understanding of their long-term behavior, biodistribution, and biocompatibility within the brain remains crucial. Furthermore, exploring novel hydrogel systems and therapeutic combinations is paramount for advancing towards more effective treatments. This review summarizes the latest advancements in this field over the past 5 years, specifically highlighting preclinical progress with novel stimuli-responsive hydrogels for treating brain diseases.
Collapse
Affiliation(s)
- Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
6
|
Chen Q, Hong D, Huang Y, Zhang Z, Wang S. Phenotypic and genotypic spectrum of noonan syndrome: A retrospective analysis of 46 consecutive pediatric patients presented at a regional cardiac center in China. Heliyon 2024; 10:e27038. [PMID: 38463782 PMCID: PMC10920370 DOI: 10.1016/j.heliyon.2024.e27038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background Noonan syndrome (NS) is relatively common but poorly recognized. We aimed to describe the phenotypic and genotypic spectrum of NS in a Chinese cohort. Method The study retrospectively investigated consecutive pediatric patients who presented at the Guangdong cardiovascular institute between 2018 and 2020 with confirmed known NS-relevant mutations determined by exome sequencing. Dates of genetic testing, Age, sex, institution of genetic testing, mutated gene (related to NS) and its classification, heterozygosity, and parental origin were identified from the sequencing reports. Facial features, cardiac defect and other clinical characteristics were also assessed. Comparisons of categorical variables between groups were examined by Chi-square test or Fisher's exact test when appropriate. Intraclass correlation coefficient (ICC) was performed to evaluate the reliability of evaluation of facial features between different evaluators. Results The most prevalent mutated genes were PTPN11 (37.0%) and RAF1 (19.6%), and most mutations were pathogenic (67.4%) and de novo (87.0%). Most patients were with NS-relevant facial features (97.4%) and cardiac defects (92.7%), where ventricular hypertrophy, pulmonary valve stenosis, and atrial septal defect were the most prevalent. Patients with mutated RAF1 appeared to be diagnosed at an older age than those with mutated PTPN11, and with higher prevalence of mitral regurgitation, hypertrophic cardiomyopathy, and ventricular hypertrophy, but lower prevalence of pulmonary valve stenosis and pulmonary artery stenosis. Patients presented at an age ≥2 years appeared to be with fewer NS-relevant facial features and cardiac defects than those aged <2 years. Conclusions These findings indicated featured distributions of phenotypic and genotypic spectrum in Chinese pediatric patients, which might be helpful for early NS diagnosis.
Collapse
Affiliation(s)
- Qinchang Chen
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dian Hong
- Pediatric intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yulu Huang
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiwei Zhang
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shushui Wang
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Kelly KJ. Perioperative anaphylaxis to fibrin sealants in children with Noonan syndrome: Is this a new disease or a new mechanism for anaphylaxis? Ann Allergy Asthma Immunol 2022; 129:11-12. [PMID: 35717129 DOI: 10.1016/j.anai.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Kevin J Kelly
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
8
|
Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH, Tyan YC. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022; 27:2902. [PMID: 35566251 PMCID: PMC9104731 DOI: 10.3390/molecules27092902] [Citation(s) in RCA: 299] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Hung-Pin Chan
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Wen Shu
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|