1
|
Yu J, Dancausse S, Paz M, Faderin T, Gaviria M, Shomar JW, Zucker D, Venkatachalam V, Klein M. Continuous, long-term crawling behavior characterized by a robotic transport system. eLife 2023; 12:e86585. [PMID: 37535068 PMCID: PMC10400072 DOI: 10.7554/elife.86585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Detailed descriptions of behavior provide critical insight into the structure and function of nervous systems. In Drosophila larvae and many other systems, short behavioral experiments have been successful in characterizing rapid responses to a range of stimuli at the population level. However, the lack of long-term continuous observation makes it difficult to dissect comprehensive behavioral dynamics of individual animals and how behavior (and therefore the nervous system) develops over time. To allow for long-term continuous observations in individual fly larvae, we have engineered a robotic instrument that automatically tracks and transports larvae throughout an arena. The flexibility and reliability of its design enables controlled stimulus delivery and continuous measurement over developmental time scales, yielding an unprecedented level of detailed locomotion data. We utilize the new system's capabilities to perform continuous observation of exploratory search behavior over a duration of 6 hr with and without a thermal gradient present, and in a single larva for over 30 hr. Long-term free-roaming behavior and analogous short-term experiments show similar dynamics that take place at the beginning of each experiment. Finally, characterization of larval thermotaxis in individuals reveals a bimodal distribution in navigation efficiency, identifying distinct phenotypes that are obfuscated when only analyzing population averages.
Collapse
Affiliation(s)
- James Yu
- Department of Physics, Northeastern UniversityBostonUnited States
| | - Stephanie Dancausse
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| | - Maria Paz
- Department of Physics, Northeastern UniversityBostonUnited States
| | - Tolu Faderin
- Department of Physics, Northeastern UniversityBostonUnited States
| | - Melissa Gaviria
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph W Shomar
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| | | | | | - Mason Klein
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
2
|
Yu J, Dancausse S, Paz M, Faderin T, Gaviria M, Shomar J, Zucker D, Venkatachalam V, Klein M. Continuous, long-term crawling behavior characterized by a robotic transport system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530235. [PMID: 36909608 PMCID: PMC10002653 DOI: 10.1101/2023.02.27.530235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Detailed descriptions of behavior provide critical insight into the structure and function of nervous systems. In Drosophila larvae and many other systems, short behavioral experiments have been successful in characterizing rapid responses to a range of stimuli at the population level. However, the lack of long-term continuous observation makes it difficult to dissect comprehensive behavioral dynamics of individual animals and how behavior (and therefore the nervous system) develops over time. To allow for long-term continuous observations in individual fly larvae, we have engineered a robotic instrument that automatically tracks and transports larvae throughout an arena. The flexibility and reliability of its design enables controlled stimulus delivery and continuous measurement over developmental time scales, yielding an unprecedented level of detailed locomotion data. We utilize the new system’s capabilities to perform continuous observation of exploratory behavior over a duration of six hours with and without a thermal gradient present, and in a single larva for over 30 hours. Long-term free-roaming behavior and analogous short-term experiments show similar dynamics that take place at the beginning of each experiment. Finally, characterization of larval thermotaxis in individuals reveals a bimodal distribution in navigation efficiency, identifying distinct phenotypes that are obfuscated when only analyzing population averages.
Collapse
Affiliation(s)
- James Yu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Stephanie Dancausse
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Maria Paz
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Tolu Faderin
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Melissa Gaviria
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Joseph Shomar
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | | | | | - Mason Klein
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| |
Collapse
|
3
|
Jacob PF, Vargas-Gutierrez P, Okray Z, Vietti-Michelina S, Felsenberg J, Waddell S. Prior experience conditionally inhibits the expression of new learning in Drosophila. Curr Biol 2021; 31:3490-3503.e3. [PMID: 34146482 PMCID: PMC8409488 DOI: 10.1016/j.cub.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Prior experience of a stimulus can inhibit subsequent acquisition or expression of a learned association of that stimulus. However, the neuronal manifestations of this learning effect, named latent inhibition (LI), are poorly understood. Here, we show that prior odor exposure can produce context-dependent LI of later appetitive olfactory memory performance in Drosophila. Odor pre-exposure forms a short-lived aversive memory whose lone expression lacks context-dependence. Acquisition of odor pre-exposure memory requires aversively reinforcing dopaminergic neurons that innervate two mushroom body compartments—one group of which exhibits increasing activity with successive odor experience. Odor-specific responses of the corresponding mushroom body output neurons are suppressed, and their output is necessary for expression of both pre-exposure memory and LI of appetitive memory. Therefore, odor pre-exposure attaches negative valence to the odor itself, and LI of appetitive memory results from a temporary and context-dependent retrieval deficit imposed by competition with the parallel short-lived aversive memory. Odor pre-exposure alters the expression of a learned association of that odor Pre-exposure memory only affects subsequent retrieval if context is consistent Pre-exposure memory can complement or compete with a learned association Odor pre-exposure forms a labile mushroom body-dependent aversive memory
Collapse
Affiliation(s)
- Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | | | - Zeynep Okray
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | | | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
4
|
Schleyer M, Fendt M, Schuller S, Gerber B. Associative Learning of Stimuli Paired and Unpaired With Reinforcement: Evaluating Evidence From Maggots, Flies, Bees, and Rats. Front Psychol 2018; 9:1494. [PMID: 30197613 PMCID: PMC6117914 DOI: 10.3389/fpsyg.2018.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 12/02/2022] Open
Abstract
Finding rewards and avoiding punishments are powerful goals of behavior. To maximize reward and minimize punishment, it is beneficial to learn about the stimuli that predict their occurrence, and decades of research have provided insight into the brain processes underlying such associative reinforcement learning. In addition, it is well known in experimental psychology, yet often unacknowledged in neighboring scientific disciplines, that subjects also learn about the stimuli that predict the absence of reinforcement. Here we evaluate evidence for both these learning processes. We focus on two study cases that both provide a baseline level of behavior against which the effects of associative learning can be assessed. Firstly, we report pertinent evidence from Drosophila larvae. A re-analysis of the literature reveals that through paired presentations of an odor A and a sugar reward (A+) the animals learn that the reward can be found where the odor is, and therefore show an above-baseline preference for the odor. In contrast, through unpaired training (A/+) the animals learn that the reward can be found precisely where the odor is not, and accordingly these larvae show a below-baseline preference for it (the same is the case, with inverted signs, for learning through taste punishment). In addition, we present previously unpublished data demonstrating that also during a two-odor, differential conditioning protocol (A+/B) both these learning processes take place in larvae, i.e., learning about both the rewarded stimulus A and the non-rewarded stimulus B (again, this is likewise the case for differential conditioning with taste punishment). Secondly, after briefly discussing published evidence from adult Drosophila, honeybees, and rats, we report an unpublished data set showing that relative to baseline behavior after truly random presentations of a visual stimulus A and punishment, rats exhibit memories of opposite valence upon paired and unpaired training. Collectively, the evidence conforms to classical findings in experimental psychology and suggests that across species animals associatively learn both through paired and through unpaired presentations of stimuli with reinforcement – with opposite valence. While the brain mechanisms of unpaired learning for the most part still need to be uncovered, the immediate implication is that using unpaired procedures as a mnemonically neutral control for associative reinforcement learning may be leading analyses astray.
Collapse
Affiliation(s)
- Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Sarah Schuller
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Behavior Genetics, Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Schleyer M, Reid SF, Pamir E, Saumweber T, Paisios E, Davies A, Gerber B, Louis M. The impact of odor-reward memory on chemotaxis in larval Drosophila. ACTA ACUST UNITED AC 2015; 22:267-77. [PMID: 25887280 PMCID: PMC4408773 DOI: 10.1101/lm.037978.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/16/2015] [Indexed: 01/29/2023]
Abstract
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior.
Collapse
Affiliation(s)
- Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Samuel F Reid
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Evren Pamir
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Emmanouil Paisios
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Alexander Davies
- University of Edinburgh, School of Informatics, Edinburgh EH8 9AB, United Kingdom
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany Otto von Guericke University Magdeburg, Institute for Biology, Behavior Genetics, 39106 Magdeburg, Germany Center of Behavioural Brain Science (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Matthieu Louis
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
6
|
Flaven-Pouchon J, Garcia T, Abed-Vieillard D, Farine JP, Ferveur JF, Everaerts C. Transient and permanent experience with fatty acids changes Drosophila melanogaster preference and fitness. PLoS One 2014; 9:e92352. [PMID: 24667657 PMCID: PMC3965419 DOI: 10.1371/journal.pone.0092352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/21/2014] [Indexed: 01/01/2023] Open
Abstract
Food and host-preference relies on genetic adaptation and sensory experience. In vertebrates, experience with food-related cues during early development can change adult preference. This is also true in holometabolous insects, which undergo a drastic nervous system remodelling during their complete metamorphosis, but remains uncertain in Drosophila melanogaster. We have conditioned D. melanogaster with oleic (C18:1) and stearic (C18:0) acids, two common dietary fatty acids, respectively preferred by larvae and adult. Wild-type individuals exposed either during a transient period of development-from embryo to adult-or more permanently-during one to ten generation cycles-were affected by such conditioning. In particular, the oviposition preference of females exposed to each fatty acid during larval development was affected without cross-effect indicating the specificity of each substance. Permanent exposure to each fatty acid also drastically changed oviposition preference as well as major fitness traits (development duration, sex-ratio, fecundity, adult lethality). This suggests that D. melanogaster ability to adapt to new food sources is determined by its genetic and sensory plasticity both of which may explain the success of this generalist-diet species.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Thibault Garcia
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Dehbia Abed-Vieillard
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
7
|
‘Decision Making’ in Larval Drosophila. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Schleyer M, Saumweber T, Nahrendorf W, Fischer B, von Alpen D, Pauls D, Thum A, Gerber B. A behavior-based circuit model of how outcome expectations organize learned behavior in larval Drosophila. Learn Mem 2011; 18:639-53. [PMID: 21946956 DOI: 10.1101/lm.2163411] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a circuitry of chemosensory processing, odor-tastant memory trace formation, and the "decision" process to behaviorally express these memory traces--or not. The model incorporates statements about the neuronal organization of innate vs. conditioned chemosensory behavior, and the types of interaction between olfactory and gustatory pathways during the establishment as well as the behavioral expression of odor-tastant memory traces. It in particular suggests that innate olfactory behavior is responsive in nature, whereas conditioned olfactory behavior is captured better when seen as an action in pursuit of its outcome. It incorporates the available neuroanatomical and behavioral data and thus should be useful as scaffold for the ongoing investigations of the chemo-behavioral system in larval Drosophila.
Collapse
Affiliation(s)
- Michael Schleyer
- Universität Würzburg, Biozentrum, Neurobiologie und Genetik, Am Hubland, 970 74 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci U S A 2011; 108:E646-54. [PMID: 21795607 DOI: 10.1073/pnas.1106411108] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABA(A) receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.
Collapse
|
10
|
Yarali A, Ehser S, Hapil FZ, Huang J, Gerber B. Odour intensity learning in fruit flies. Proc Biol Sci 2009; 276:3413-20. [PMID: 19586944 DOI: 10.1098/rspb.2009.0705] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level.
Collapse
|
11
|
The behaviour of Drosophila melanogaster maggots is affected by social, physiological and temporal factors. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|