1
|
Macedo-Rego RC, Jennions MD, Santos ESA. Does the potential strength of sexual selection differ between mating systems with and without defensive behaviours? A meta-analysis. Biol Rev Camb Philos Soc 2024; 99:1504-1523. [PMID: 38597347 DOI: 10.1111/brv.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The Darwin-Bateman paradigm predicts that females enhance their fitness by being choosy and mating with high-quality males, while males should compete to mate with as many females as possible. In many species, males enhance their fitness by defending females and/or resources used by females. That is, males directly defend access to mating opportunities. However, paternity analyses have repeatedly shown that females in most species mate polyandrously, which contradicts traditional expectations that male defensive behaviours lead to monandry. Here, in an extensive meta-analysis, encompassing 109 species and 1026 effect sizes from across the animal kingdom, we tested if the occurrence of defensive behaviours modulates sexual selection on females and males. If so, we can illuminate the extent to which males really succeed in defending access to mating and fertilisation opportunities. We used four different indices of the opportunity for sexual selection that comprise pre-mating and/or post-mating episodes of selection. We found, for both sexes, that the occurrence of defensive behaviours does not modulate the potential strength of sexual selection. This implies that male defensive behaviours do not predict the true intensity of sexual selection. While the most extreme levels of sexual selection on males are in species with male defensive behaviours, which indicates that males do sometimes succeed in restricting females' re-mating ability (e.g. elephant seals, Mirounga leonina), estimates of the opportunity for sexual selection vary greatly across species, regardless of whether or not defensive behaviours occur. Indeed, widespread polyandry shows that females are usually not restricted by male defensive behaviours. In addition, our results indicate that post-mating episodes of selection, such as cryptic female choice and sperm competition, might be important factors modulating the opportunity for sexual selection. We discuss: (i) why male defensive behaviours fail to lower the opportunity for sexual selection among females or fail to elevate it for males; (ii) how post-mating events might influence sexual selection; and (iii) the role of females as active participants in sexual selection. We also highlight that inadequate data reporting in the literature prevented us from extracting effect sizes from many studies that had presumably collected the relevant data.
Collapse
Affiliation(s)
- Renato C Macedo-Rego
- Programa de Pós-graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, no. 321, São Paulo, SP 05508-090, Brazil
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch, 7600, South Africa
| | - Eduardo S A Santos
- Programa de Pós-graduação em Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, no. 321, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
2
|
Felmy A, Weissert N, Travis J, Jokela J. Mate availability determines use of alternative reproductive phenotypes in hermaphrodites. Behav Ecol 2020. [DOI: 10.1093/beheco/araa046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
In many species, individuals can employ alternative reproductive phenotypes, with profound consequences for individual fitness and population dynamics. This is particularly relevant for self-compatible hermaphrodites, which have exceptionally many reproductive options. Here we investigated the occurrence of reproductive phenotypes in the simultaneously hermaphroditic freshwater snail Radix balthica under experimentally simulated conditions of low versus moderate population density. We captured all mating behavior on camera and measured individual female lifetime reproductive success. We found every possible reproductive phenotype: (1) both male and female (i.e., truly hermaphroditic) reproduction, (2) purely female and (3) purely male reproduction, (4) male reproduction combined with self-fertilization and (5) female mating activity, (6) pure self-fertilization without mating and (7–8) two types of reproductive failure. Variation in alternative reproductive phenotypes was explained by mate availability (10.8%) and individual condition, approximated by a snail’s mean daily growth rate (17.5%). Increased mate availability resulted in a lower diversity of reproductive phenotypes, in particular increasing the frequency of true hermaphrodites. However, it lowered phenotype-specific fecundities and hence reduced the population growth rate. Snails in better condition were more likely to reproduce as true hermaphrodites or pure females, whereas low-condition snails tended to suffer reproductive failure. Overall, we show substantial variation in alternative reproductive phenotypes in a hermaphrodite, which is possibly in part maintained by fluctuations in population density and thus mate availability, and by variation in individual condition. We also provide evidence of an almost 2-fold increase in clutch size that can be ascribed specifically to mating as a female.
Collapse
Affiliation(s)
- Anja Felmy
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, Switzerland
- ETH Zurich, D-USYS, Institute of Integrative Biology, Universitätstrasse 16, Zurich, Switzerland
- Department of Zoology, University of Oxford, Oxford, UK
| | - Nora Weissert
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, Switzerland
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jukka Jokela
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, Switzerland
- ETH Zurich, D-USYS, Institute of Integrative Biology, Universitätstrasse 16, Zurich, Switzerland
| |
Collapse
|
3
|
Miranda MS, Bôas Correia LV, Pecora IL. Activity and reproduction in Megalobulimus paranaguensis (Gastropoda, Eupulmonata): implications for conservation in captivity for a South American land snail. J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1776904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marcel Sabino Miranda
- Programa de Pós-Graduação em Biologia Animal, Universidade Estadual de Campinas, Campinas, Brasil
| | - Lucas Vilas Bôas Correia
- Campus do Litoral Paulista, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, São Vicente, Brasil
| | - Iracy Lea Pecora
- Campus do Litoral Paulista, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, São Vicente, Brasil
| |
Collapse
|
4
|
Miranda M, Pecora I. Conservation implications of behavioural interactions between the Giant African Snail and a Native Brazilian species. ETHOL ECOL EVOL 2017. [DOI: 10.1080/03949370.2015.1125951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Marcel Miranda
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Instituto de Biologia, Rua Monteiro Lobato 255, Campinas, Brazil
| | - Iracy Pecora
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Praça Infante Dom Henrique s/n, São Vicente, Brazil
| |
Collapse
|
5
|
Janssen R, Baur B. Seasonal effects on egg production and level of paternity in a natural population of a simultaneous hermaphrodite snail. Ecol Evol 2015; 5:2916-28. [PMID: 26306176 PMCID: PMC4541995 DOI: 10.1002/ece3.1560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/10/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
In a seasonal environment, the suitable time window for females to reproduce is restricted by both environmental conditions and the availability of males. In simultaneous hermaphrodites, which are female and male at the same time, selection on a trait that is solely beneficial for one sexual function cannot occur independently. Therefore, it is assumed that the optimal time window for reproduction is a compromise between the two sexual functions in simultaneous hermaphrodites, mediated by environmental conditions. We examined seasonal patterns of reproduction and the resulting paternity in a natural population of the simultaneously hermaphroditic land snail Arianta arbustorum. Adult and premature individuals (snails in a short protandric phase) were collected on four occasions over the entire active season. The snails were allowed to deposit eggs after which we assessed the level of paternity in their hatched offspring. Individuals mated throughout the reproductive season, whereas egg production - the major task of the female function - was restricted to the first half of the season. Snails collected in autumn were allowed to hibernate under laboratory conditions. As a result, we found that premature individuals began to mate late in the reproductive season, but did not start to produce eggs before emerging from hibernation. Our results demonstrate a temporal shift of reproductive activities; the egg production and oviposition occur mainly in the first half of the season, while sperm production and mating occur over the entire season. In subadult and adult snails, sperm obtained from several partners in the second part of the reproductive season are stored during hibernation for the fertilization of eggs in the successive years. These results extend our understanding of the influence of both natural and sexual selection on reproductive strategies in hermaphrodites.
Collapse
Affiliation(s)
- Ruben Janssen
- Section of Conservation Biology, Department of Environmental Sciences, University of BaselSt. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland
| | - Bruno Baur
- Section of Conservation Biology, Department of Environmental Sciences, University of BaselSt. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland
| |
Collapse
|
6
|
Parkyn J, Brooks L, Newell D. Habitat Use and Movement Patterns of the Endangered Land SnailThersites mitchellae(Cox, 1864) (Camaenidae). MALACOLOGIA 2014. [DOI: 10.4002/040.057.0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Haeussler EM, Schmera D, Baur A, Baur B. Random mating with respect to mating status in the simultaneously hermaphroditic land snail Arianta arbustorum. INVERTEBR REPROD DEV 2014. [DOI: 10.1080/07924259.2013.855267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Kupfernagel S, Beier K, Janssen R, Rusterholz HP, Baur A, Baur B. An Immunolabelling Technique to Track Sperm from Different Mates in the Female Reproductive Organs of Terrestrial Gastropods. MALACOLOGIA 2013. [DOI: 10.4002/040.056.0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Nakadera Y, Koene JM. Reproductive strategies in hermaphroditic gastropods: conceptual and empirical approaches. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0272] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An individual optimizes its reproductive success by adopting a particular reproductive strategy. Studying the details of a reproductive strategy leads to an understanding of how sexual selection acts, as the former is the process via which the individual reproduces successfully. Hermaphroditic gastropods display a bewildering diversity of reproductive strategies, which may be due to their mode of gender expression, when compared with well-studied separate-sexed species. Extensive theoretical, observational, and experimental research has been conducted on this topic. However, despite our knowledge about the reproductive system of hermaphroditic gastropods, we still need to fill the gap between pre- and post-copulatory processes and reproductive success. Here, we review and propose conceptual and empirical approaches aimed at understanding reproductive strategies of hermaphroditic gastropods. In sum, our suggestions are (i) to focus on sex-biased traits, (ii) to take biologically reliable measurements at both the pre- and post-copulatory level that relate to reproductive success, and (iii) to examine the fitness consequences of biased sex allocation.
Collapse
Affiliation(s)
- Yumi Nakadera
- Section Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Joris M. Koene
- Section Animal Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|