1
|
Bates L, Fishlock VL, Plotnik J, de Silva S, Shannon G. Knowledge transmission, culture and the consequences of social disruption in wild elephants. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240132. [PMID: 40308137 PMCID: PMC12044372 DOI: 10.1098/rstb.2024.0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 05/02/2025] Open
Abstract
Cultural knowledge is widely presumed to be important for elephants. In all three elephant species, individuals tend to congregate around older conspecifics, creating opportunities for social transmission. However, direct evidence of social learning and cultural traditions in elephants is scarce. Here, we briefly outline that evidence then provide a systematic review of how elephant societies respond to the loss of potentially knowledgeable individuals or opportunities for knowledge transfer, which we characterize as social disruption. We consider observations from 95 peer-reviewed, primary research papers that describe disruption to elephant societies or networks via the removal or death of individuals. Natural deaths were mentioned in 14 papers, while 70 detailed human-caused deaths or disruption. Grouping descriptions according to consequences for behaviour and sociality, and demography and fitness, we show that severely disrupted populations are less cohesive, may exhibit reduced fitness or calf survival and respond inappropriately to threats and predators. We suggest that severe social disruption can inhibit or break potential pathways of information transmission, providing indirect evidence for the role of social transmission in elephants. This has implications for elephant conservation amid increasing anthropogenic change across their habitats.This article is part of the theme issue 'Animal culture: conservation in a changing world'.
Collapse
Affiliation(s)
- Lucy Bates
- School of Psychology, Sport and Health Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Victoria Louise Fishlock
- Amboseli Trust for Elephants, Nairobi, Kenya
- Centre for Ecology and Conservation, University of Exeter College of Life and Environmental Sciences, Exeter TR10 9FE, UK
| | - Joshua Plotnik
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA
- Department of Psychology, The Graduate Centre, City University of New York, New York, NY 10016, USA
| | - Shermin de Silva
- Department of Ecology and Evolution, University of California San Diego, La Jolla, CA 92093, USA
- Trunks & Leaves Inc, Pittsfield, MA 01201, USA
| | - Graeme Shannon
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2DG, UK
- Norwegian Institute for Nature Research, 7034 Trondheim, Norway
| |
Collapse
|
2
|
Hex SBSW, Isbilen ES, Rubenstein DI. Plains Zebras Prioritize Foraging Without Sacrificing Social Bonds During a Severe Drought. Ecol Evol 2025; 15:e70632. [PMID: 39790732 PMCID: PMC11710937 DOI: 10.1002/ece3.70632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 01/12/2025] Open
Abstract
Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions. We investigated how the highly social plains zebra (Equus quagga) modify their activity budgets, social networks, and multimodal communication during a drought. Although animals prioritized feeding and the number of social interactions dramatically decreased in the late drought period, social associations remained robust. We observed age/sex class-specific changes in social behavior, reflecting the nutritional needs and social niche of each individual. Stallions devoted more time to greeting behaviors, which could mitigate harassment by bachelor males and facilitate grazing time for the females of the harem. Juveniles significantly increased time spent active socializing, despite mothers showing the greatest decrease in the number of social interactions. Instead, unrelated, nonlactating females served as social partners, accommodating both juveniles' social needs and lactating mothers' nutritive requirements. Using a network-based representation of multimodal communication, we observed a decrease in the number of signals used during the drought. Individuals used less diverse multimodal combinations, particularly in the costly context of aggression. These findings illustrate how social roles and differential responses to acute environmental stress within stable social groups may contribute to species resilience, and how communication flexibly responds to facilitate both survival and sociality under harsh environmental conditions.
Collapse
Affiliation(s)
- Severine B. S. W. Hex
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Erin S. Isbilen
- Child Study CenterYale University, School of MedicineNew HavenConnecticutUSA
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
3
|
Ruberto T, Swaney WT, Reddon AR. Submissive behavior is affected by territory structure in a social fish. Curr Zool 2024; 70:803-809. [PMID: 39678816 PMCID: PMC11634681 DOI: 10.1093/cz/zoae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/25/2024] [Indexed: 12/17/2024] Open
Abstract
Group living may engender conflict over food, reproduction, or other resources and individuals must be able to manage conflict for social groups to persist. Submission signals are an adaptation for establishing and maintaining social hierarchy position, allowing a subordinate individual to avoid protracted and costly aggressive interactions with dominant individuals. In the daffodil cichlid fish (Neolamprologus pulcher), subordinates may use submission signals to resolve conflicts with dominant individuals and maintain their social status within the group. The complexity of the physical environment may affect the value of submission signals compared with fleeing or avoidance, which may require certain physical features such as shelters to be effective. We investigated how the ecological context affected the expression of submission in subordinate daffodil cichlids by examining their behavior under different arrangements of the physical environment within their territories. We altered the number of shelters provided to daffodil cichlid groups and compared the interactions between dominant and subordinate individuals under each shelter condition by scoring the social and cooperative behaviors of the group members. We found that behaviors of group members were modulated by the environment: subordinates displayed fewer submission and fleeing behaviors in more structurally complex environments and dominants were more aggressive to subordinates when more shelters were present. Our results help to elucidate the role of the physical environment in the modulation of social interactions in group-living animals and may have implications for the welfare of captively housed social cichlid groups.
Collapse
Affiliation(s)
- Tommaso Ruberto
- School of Biological and Environmental Sciences, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK
| | - William T Swaney
- School of Biological and Environmental Sciences, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK
| | - Adam R Reddon
- School of Biological and Environmental Sciences, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
4
|
Spiegel O, Michelangeli M, Sinn DL, Payne E, Klein JRV, Kirkpatrick J, Harbusch M, Sih A. Resource manipulation reveals interactive phenotype-dependent foraging in free-ranging lizards. J Anim Ecol 2024; 93:1108-1122. [PMID: 38877691 DOI: 10.1111/1365-2656.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Recent evidence suggests that individuals differ in foraging tactics and this variation is often linked to an individual's behavioural type (BT). Yet, while foraging typically comprises a series of search and handling steps, empirical investigations have rarely considered BT-dependent effects across multiple stages of the foraging process, particularly in natural settings. In our long-term sleepy lizard (Tiliqua rugosa) study system, individuals exhibit behavioural consistency in boldness (measured as an individual's willingness to approach a novel food item in the presence of a threat) and aggressiveness (measured as an individual's response to an 'attack' by a conspecific dummy). These BTs are only weakly correlated and have previously been shown to have interactive effects on lizard space use and movement, suggesting that they could also affect lizard foraging performance, particularly in their search behaviour for food. To investigate how lizards' BTs affect their foraging process in the wild, we supplemented food in 123 patches across a 120-ha study site with three food abundance treatments (high, low and no-food controls). Patches were replenished twice a week over the species' entire spring activity season and feeding behaviours were quantified with camera traps at these patches. We tracked lizards using GPS to determine their home range (HR) size and repeatedly assayed their aggressiveness and boldness in designated assays. We hypothesised that bolder lizards would be more efficient foragers while aggressive ones would be less attentive to the quality of foraging patches. We found an interactive BT effect on overall foraging performance. Individuals that were both bold and aggressive ate the highest number of food items from the foraging array. Further dissection of the foraging process showed that aggressive lizards in general ate the fewest food items in part because they visited foraging patches less regularly, and because they discriminated less between high and low-quality patches when revisiting them. Bolder lizards, in contrast, ate more tomatoes because they visited foraging patches more regularly, and ate a higher proportion of the available tomatoes at patches during visits. Our study demonstrates that BTs can interact to affect different search and handling components of the foraging process, leading to within-population variation in foraging success. Given that individual differences in foraging and movement will influence social and ecological interactions, our results highlight the potential role of BT's in shaping individual fitness strategies and population dynamics.
Collapse
Affiliation(s)
- Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcus Michelangeli
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Janine-Rose V Klein
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Jamie Kirkpatrick
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Marco Harbusch
- Georg-August-Büsgen-Institut, Universität Göttingen, Göttingen, Germany
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| |
Collapse
|
5
|
Philson CS, Blumstein DT. Emergent social structure is typically not associated with survival in a facultatively social mammal. Biol Lett 2023; 19:20220511. [PMID: 36918036 PMCID: PMC10014246 DOI: 10.1098/rsbl.2022.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
For social animals, group social structure has important consequences for disease and information spread. While prior studies showed individual connectedness within a group has fitness consequences, less is known about the fitness consequences of group social structure for the individuals who comprise the group. Using a long-term dataset on a wild population of facultatively social yellow-bellied marmots (Marmota flaviventer), we showed social structure had largely no relationship with survival, suggesting consequences of individual social phenotypes may not scale to the group social phenotype. An observed relationship for winter survival suggests a potentially contrasting direction of selection between the group and previous research on the individual level; less social individuals, but individuals in more social groups experience greater winter survival. This work provides valuable insights into evolutionary implications across social phenotypic scales.
Collapse
Affiliation(s)
- Conner S. Philson
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA
| |
Collapse
|
6
|
Social responses to the natural loss of individuals in Barbary macaques. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractIn recent years, there has been considerable interest in investigating how animal social structure is affected by the loss of individuals. This is often achieved using simulations that generate predictions regarding how the removal of ‘key’ individuals from a group affects network structure. However, little is known about the effects of such removals in wild and free-ranging populations, particularly the extent to which naturally occurring mortality events and the loss of a large proportion of individuals from a social group affects the overall structure of a social network. Here, we used data from a population of wild Barbary macaques (Macaca sylvanus) that was exposed to an exceptionally harsh winter, culminating in the death of 64% of the adults from two groups. We analysed how social interaction patterns among surviving individuals were affected by the natural loss of group members using social networks based on affiliative (i.e., grooming) and aggressive social interactions. We show that only the structure of the pre-decline grooming networks was conserved in the post-decline networks, suggesting that grooming, but not aggression networks are resilient against the loss of group members. Surviving group members were not significantly different from the non-survivors in terms of their affiliative and agonistic relationships, and did not form assorted communities in the pre-decline networks. Overall, our results suggest that in primates, patterns of affiliative interactions are more resilient to changes in group composition than aggressive interaction patterns, which tend to be used more flexibly in new conditions.
Collapse
|
7
|
Bonnell TR, Henzi SP, Barrett L. Using network synchrony to identify drivers of social dynamics. Proc Biol Sci 2022; 289:20220537. [PMID: 35765841 PMCID: PMC9240667 DOI: 10.1098/rspb.2022.0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Social animals frequently show dynamic social network patterns, the consequences of which are felt at the individual and group level. It is often difficult, however, to identify what drivers are responsible for changes in these networks. We suggest that patterns of network synchronization across multiple social groups can be used to better understand the relative contributions of extrinsic and intrinsic drivers. When groups are socially separated, but share similar physical environments, the extent to which network measures across multiple groups covary (i.e. network synchrony) can provide an estimate of the relative roles of extrinsic and intrinsic drivers. As a case example, we use allogrooming data from three adjacent vervet monkey groups to generate dynamic social networks. We found that network strength was strongly synchronized across the three groups, pointing to shared extrinsic environmental conditions as the driver. We also found low to moderate levels of synchrony in network modularity, suggesting that intrinsic social processes may be more important in driving changes in subgroup formation in this population. We conclude that patterns of network synchronization can help guide future research in identifying the proximate mechanisms behind observed social dynamics in animal groups.
Collapse
Affiliation(s)
- Tyler R. Bonnell
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada,Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Pretoria, 0002, South Africa
| | - S. Peter Henzi
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada,Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Pretoria, 0002, South Africa
| | - Louise Barrett
- Department of Psychology, University of Lethbridge, Lethbridge, Alberta, Canada,Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, Pretoria, 0002, South Africa
| |
Collapse
|
8
|
Beltrão P, Gomes ACR, Cardoso GC. Collective foraging: experimentally‐increased competition decreases group performance exploiting a permanent resource. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrícia Beltrão
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| | - Ana Cristina R. Gomes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| |
Collapse
|
9
|
Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Godfrey SS, Wohlfeil C, Sih A. Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. Payne
- Department of Environmental Science and Policy University of California Davis Davis USA
| | - O. Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University Tel Aviv Israel
| | - D. L. Sinn
- Department of Environmental Science and Policy University of California Davis Davis USA
- Department of Biological Sciences University of Tasmania, Hobart Tasmania Australia
| | - S. T. Leu
- School of Animal and Veterinary Sciences, University of Adelaide Adelaide Australia
| | - M. G. Gardner
- College of Science and Engineering, Flinders University Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide Australia
| | - S. S. Godfrey
- Department of Zoology University of Otago Dunedin New Zealand
| | - C. Wohlfeil
- College of Science and Engineering, Flinders University Adelaide Australia
| | - A. Sih
- Department of Environmental Science and Policy University of California Davis Davis USA
| |
Collapse
|
10
|
Cook PA, Baker OM, Costello RA, Formica VA, Brodie ED. Group composition of individual personalities alters social network structure in experimental populations of forked fungus beetles. Biol Lett 2022; 18:20210509. [PMID: 35291883 PMCID: PMC8923822 DOI: 10.1098/rsbl.2021.0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Social network structure is a critical group character that mediates the flow of information, pathogens and resources among individuals in a population, yet little is known about what shapes social structures. In this study, we experimentally tested whether social network structure depends on the personalities of individual group members. Replicate groups of forked fungus beetles (Bolitotherus cornutus) were engineered to include only members previously assessed as either more social or less social. We found that individuals expressed consistent personalities across social contexts, exhibiting repeatable numbers of interactions and numbers of partners. Groups composed of more social individuals formed networks with higher interaction rates, higher tie density, higher global clustering and shorter average shortest paths than those composed of less social individuals. We highlight group composition of personalities as a source of variance in group traits and a potential mechanism by which networks could evolve.
Collapse
Affiliation(s)
- Phoebe A. Cook
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Olivia M. Baker
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Robin A. Costello
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
11
|
Michelangeli M, Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Sih A. Personality, spatiotemporal ecological variation and resident/explorer movement syndromes in the sleepy lizard. J Anim Ecol 2021; 91:210-223. [PMID: 34679184 DOI: 10.1111/1365-2656.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
Individual variation in movement is profoundly important for fitness and offers key insights into the spatial and temporal dynamics of populations and communities. Nonetheless, individual variation in fine-scale movement behaviours is rarely examined even though animal tracking devices offer the long-term, high-resolution, repeatable data in natural conditions that are ideal for studying this variation. Furthermore, of the few studies that consider individual variation in movement, even fewer also consider the internal traits and environmental factors that drive movement behaviour which are necessary for contextualising individual differences in movement patterns. In this study, we GPS tracked a free-ranging population of sleepy lizards Tiliqua rugosa, each Austral spring over 5 years to examine consistent among-individual variation in movement patterns, as well as how these differences were mediated by key internal and ecological factors. We found that individuals consistently differed in a suite of weekly movement traits, and that these traits strongly covaried among-individuals, forming movement syndromes. Lizards fell on a primary movement continuum, from 'residents' that spent extended periods of time residing within smaller core areas of their home range, to 'explorers' that moved greater distances and explored vaster areas of the environment. Importantly, we also found that these consistent differences in lizard movement were related to two ecologically important animal personality traits (boldness and aggression), their sex, key features of the environment (including food availability, and a key water resource), habitat type and seasonal variation (cool/moist vs. hot/drier) in environmental conditions. Broadly, these movement specialisations likely reflect variation in life-history tactics including foraging and mating tactics that ultimately underlie key differences in space use. Such information can be used to connect phenotypic population structure to key ecological and evolutionary processes, for example social networks and disease-transmission pathways, further highlighting the value of examining individual variation in movement behaviour.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Orr Spiegel
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Stephan T Leu
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Payne E, Sinn D, Spiegel O, Leu S, Gardner M, Godfrey S, Wohlfeil C, Sih A. Consistent after all: behavioural repeatability in a long-lived lizard across a 6-year field study. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wohlfeil CK, Godfrey SS, Leu ST, Clayton J, Gardner MG. Spatial proximity and asynchronous refuge sharing networks both explain patterns of tick genetic relatedness among lizards, but in different years. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Caroline K. Wohlfeil
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | | | - Stephan T. Leu
- School of Animal and Veterinary Sciences University of Adelaide Adelaide South Australia Australia
| | - Jessica Clayton
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit South Australian Museum Adelaide South Australia Australia
| |
Collapse
|
14
|
Payne E, Sinn DL, Spiegel O, Leu ST, Wohlfeil C, Godfrey SS, Gardner M, Sih A. Consistent individual differences in ecto‐parasitism of a long‐lived lizard host. OIKOS 2020. [DOI: 10.1111/oik.06670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eric Payne
- Dept of Environmental Science and Policy, Univ. of California Davis 1 Shields Ave. Davis CA 95616‐5270 USA
| | - David L. Sinn
- Dept of Environmental Science and Policy, Univ. of California Davis 1 Shields Ave. Davis CA 95616‐5270 USA
- Dept of Biological Sciences, Univ. of Tasmania Hobart Tasmania Australia
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv Univ. Tel Aviv Israel
| | - Stephan T. Leu
- Dept of Biological Sciences, Macquarie Univ. Sydney Australia
| | - Caroline Wohlfeil
- College of Science and Engineering, Flinders Univ. Adelaide Australia
| | | | - Michael Gardner
- College of Science and Engineering, Flinders Univ. Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum North Terrace Adelaide Australia
| | - Andy Sih
- Dept of Environmental Science and Policy, Univ. of California Davis 1 Shields Ave. Davis CA 95616‐5270 USA
| |
Collapse
|
15
|
Scherer C, Radchuk V, Franz M, Thulke H, Lange M, Grimm V, Kramer‐Schadt S. Moving infections: individual movement decisions drive disease persistence in spatially structured landscapes. OIKOS 2020. [DOI: 10.1111/oik.07002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cédric Scherer
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | - Viktoriia Radchuk
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | - Mathias Franz
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | | | - Martin Lange
- Helmholtz Centre for Environmental Research–UFZ Leipzig Germany
| | - Volker Grimm
- Helmholtz Centre for Environmental Research–UFZ Leipzig Germany
| | - Stephanie Kramer‐Schadt
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
- Dept of Ecology, Technische Univ. Berlin Berlin Germany
| |
Collapse
|
16
|
Prehn SG, Laesser BE, Clausen CG, Jønck K, Dabelsteen T, Brask JB. Seasonal variation and stability across years in a social network of wild giraffe. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Abstract
Abstract
Demographic processes play a key role in shaping the patterns of social relations among individuals in a population. Social network analysis is a powerful quantitative tool for assessing the social structure formed by associations between individuals. However, demographic processes are rarely accounted for in such analyses. Here, we summarize how the structure of animal social networks is shaped by the joint effects of social behavior and turnover of individuals and suggest how a deeper understanding of these processes can open new, exciting avenues for research. Death or dispersal can have the direct effect of removing an individual and all its social connections, and can also have indirect effects, spurring changes in the distribution of social connections between remaining individuals. Recruitment and integration of juveniles and immigrant into existing social networks are critical to the emergence and persistence of social network structure. Together, these behavioral responses to loss and gain of social partners may impact how societies respond to seasonal or catastrophic turnover events. The fitness consequences of social position (e.g., survival and reproductive rates) may also create feedback between the social network structure and demography. Understanding how social structure changes in response to turnover of individuals requires further integration between long-term field studies and network modeling methods. These efforts will likely yield new insights into the connections between social networks and life history, ecological change, and evolutionary dynamics.
Collapse
Affiliation(s)
| | - Allison E Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
18
|
Norval G, Gardner MG. The natural history of the sleepy lizard, Tiliqua rugosa
(Gray, 1825) - Insight from chance observations and long-term research on a common Australian skink species. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerrut Norval
- College of Science and Engineering; Flinders University; GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Michael G. Gardner
- College of Science and Engineering; Flinders University; GPO Box 2100 Adelaide South Australia 5001 Australia
- Evolutionary Biology Unit; South Australian Museum; Adelaide South Australia Australia
| |
Collapse
|
19
|
Hellmann JK, Hamilton IM. Intragroup social dynamics vary with the presence of neighbors in a cooperatively breeding fish. Curr Zool 2018; 65:21-31. [PMID: 30697235 PMCID: PMC6347054 DOI: 10.1093/cz/zoy025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Conflict is an inherent part of social life in group-living species. Group members may mediate conflict through submissive and affiliative behaviors, which can reduce aggression, stabilize dominance hierarchies, and foster group cohesion. The frequency and resolution of within-group conflict may vary with the presence of neighboring groups. Neighbors can threaten the territory or resources of the whole group, promoting behaviors that foster within-group cohesion. However, neighbors may also foster conflict of interests among group members: opportunities for subordinate dispersal may alter conflict among dominants and subordinates while opportunities for extra-pair reproduction may increase conflict between mates. To understand how neighbors mediate within-group conflict in the cooperatively breeding fish Neolamprologus pulcher, we measured behavioral dynamics and social network structure in isolated groups, groups recently exposed to neighbors, and groups with established neighbors. Aggression and submission between the dominant male and female pair were high in isolated groups, but dominant aggression was directly primarily at subordinates when groups had neighbors. This suggests that neighbors attenuate conflict between mates and foster conflict between dominants and subordinates. Further, aggression and submission between similarly sized group members were most frequent when groups had neighbors, suggesting that neighbors induce rank-related conflict. We found relatively little change in within-group affiliative networks across treatments, suggesting that the presence of neighbors does not alter behaviors associated with promoting group cohesion. Collectively, these results provide some of the first empirical insights into the extent to which intragroup behavioral networks are mediated by intergroup interactions and the broader social context.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Larson SM, Ruiz-Lambides A, Platt ML, Brent LJ. Social network dynamics precede a mass eviction in group-living rhesus macaques. Anim Behav 2018; 136:185-193. [PMID: 29887618 PMCID: PMC5990275 DOI: 10.1016/j.anbehav.2017.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Network dynamics can reveal information about the adaptive function of social behaviour and the extent to which social relationships can flexibly respond to extrinsic pressures. Changes in social networks occur following changes to the social and physical environment. By contrast, we have limited understanding of whether changes in social networks precede major group events. Permanent evictions can be important determinants of gene flow and population structure and are a clear example of an event that might be preceded by social network dynamics. Here we examined the social networks of a group of rhesus macaques, Macaca mulatta, in the 2 years leading up to the eviction of 22% of adult females, which are the philopatric sex. We found that females engaged in the same amount of aggression and grooming in the 2 years leading up to the eviction but that there were clear changes in their choice of social partners. Females that would eventually be evicted received more aggression from lower-ranking females as the eviction approached. Evicted females also became more discriminating in their grooming relationships in the year nearer the split, showing a greater preference for one another and becoming more cliquish. Put simply, the females that would later be evicted continued to travel with the rest of the group as the eviction approached but were less likely to interact with other group members in an affiliative manner. These results have potential implications for understanding group cohesion and the balance between cooperation and competition that mediates social groups.
Collapse
Affiliation(s)
- Sam M. Larson
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | | | - Michael L. Platt
- Departments of Neuroscience, Psychology, and Marketing, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Lauren J.N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, U.K
| |
Collapse
|
21
|
Where should we meet? Mapping social network interactions of sleepy lizards shows sex-dependent social network structure. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Jones K, Thompson R, Godfrey S. Social networks: a tool for assessing the impact of perturbations on wildlife behaviour and implications for pathogen transmission. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Wildlife are increasingly subject to perturbations, which can impact pathogen transmission and lead to disease emergence. While a myriad of factors influence disease dynamics in wildlife, behaviour is emerging as a major influence. In this review, we examine how perturbations alter the behaviour of individuals and how, in turn, disease transmission may be impacted, with a focus on the use of network models as a powerful tool. There are emerging hypotheses as to how networks respond to different types of perturbations. The broad effects of perturbations make predicting potential outcomes and identifying mitigation opportunities for disease emergence critical; yet, the current paucity of data makes identification of underlying trends difficult. Social network analysis facilitates a mechanistic approach to how perturbation-induced behavioural changes result in shifts in pathogen transmission. However, the field is still developing, and future work should strive to address current deficits. There is particular need for empirical data to support modelling predictions and increased inclusion of pathogen monitoring in network studies.
Collapse
Affiliation(s)
- K.L. Jones
- aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - R.C.A. Thompson
- aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - S.S. Godfrey
- aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
- bDepartment of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Williams AE, Worsley-Tonks KE, Ezenwa VO. Drivers and consequences of variation in individual social connectivity. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Bull CM, Gardner MG, Sih A, Spiegel O, Godfrey SS, Leu ST. Why Is Social Behavior Rare in Reptiles? Lessons From Sleepy Lizards. ADVANCES IN THE STUDY OF BEHAVIOR 2017. [DOI: 10.1016/bs.asb.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Krause S, Wilson AD, Ramnarine IW, Herbert-Read JE, Clément RJ, Krause J. Guppies occupy consistent positions in social networks: mechanisms and consequences. Behav Ecol 2016. [DOI: 10.1093/beheco/arw177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Spiegel O, Leu ST, Sih A, Godfrey SS, Bull CM. When the going gets tough: behavioural type-dependent space use in the sleepy lizard changes as the season dries. Proc Biol Sci 2016; 282:rspb.2015.1768. [PMID: 26609082 DOI: 10.1098/rspb.2015.1768] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding space use remains a major challenge for animal ecology, with implications for species interactions, disease spread, and conservation. Behavioural type (BT) may shape the space use of individuals within animal populations. Bolder or more aggressive individuals tend to be more exploratory and disperse further. Yet, to date we have limited knowledge on how space use other than dispersal depends on BT. To address this question we studied BT-dependent space-use patterns of sleepy lizards (Tiliqua rugosa) in southern Australia. We combined high-resolution global positioning system (GPS) tracking of 72 free-ranging lizards with repeated behavioural assays, and with a survey of the spatial distributions of their food and refuge resources. Bayesian generalized linear mixed models (GLMM) showed that lizards responded to the spatial distribution of resources at the neighbourhood scale and to the intensity of space use by other conspecifics (showing apparent conspecific avoidance). BT (especially aggressiveness) affected space use by lizards and their response to ecological and social factors, in a seasonally dependent manner. Many of these effects and interactions were stronger later in the season when food became scarce and environmental conditions got tougher. For example, refuge and food availability became more important later in the season and unaggressive lizards were more responsive to these predictors. These findings highlight a commonly overlooked source of heterogeneity in animal space use and improve our mechanistic understanding of processes leading to behaviourally driven disease dynamics and social structure.
Collapse
Affiliation(s)
- Orr Spiegel
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Stephan T Leu
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, Australia
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Stephanie S Godfrey
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, Western Australia, Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Sasaki T, Janssen MA, Shaffer Z, Pratt SC. Exploration of unpredictable environments by networked groups. Curr Zool 2016; 62:207-214. [PMID: 29491907 PMCID: PMC5804274 DOI: 10.1093/cz/zow052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022] Open
Abstract
Information sharing is a critical task for group-living animals. The pattern of sharing can be modeled as a network whose structure can affect the decision-making performance of individual members as well as that of the group as a whole. A fully connected network, in which each member can directly transfer information to all other members, ensures rapid sharing of important information, such as a promising foraging location. However, it can also impose costs by amplifying the spread of inaccurate information (if, for example the foraging location is actually not profitable). Thus, an optimal network structure should balance effective sharing of current knowledge with opportunities to discover new information. We used a computer simulation to measure how well groups characterized by different network structures (fully connected, small world, lattice, and random) find and exploit resource peaks in a variable environment. We found that a fully connected network outperformed other structures when resource quality was predictable. When resource quality showed random variation, however, the small world network was better than the fully connected one at avoiding extremely poor outcomes. These results suggest that animal groups may benefit by adjusting their information-sharing network structures depending on the noisiness of their environment.
Collapse
Affiliation(s)
- Takao Sasaki
- School of Life Sciences and Center for Social Dynamics and Complexity, Arizona State University, Tempe AZ 85287-4501, USA.,Department of Zoology, University of Oxford, OX1 3PS, UK, and
| | - Marco A Janssen
- School of Sustainability and Center for Behavior, Institutions and the Environment, Arizona State University, Tempe, AZ 85287-5502, USA
| | - Zachary Shaffer
- School of Life Sciences and Center for Social Dynamics and Complexity, Arizona State University, Tempe AZ 85287-4501, USA
| | - Stephen C Pratt
- School of Life Sciences and Center for Social Dynamics and Complexity, Arizona State University, Tempe AZ 85287-4501, USA
| |
Collapse
|
28
|
Spiegel O, Leu ST, Sih A, Bull CM. Socially interacting or indifferent neighbours? Randomization of movement paths to tease apart social preference and spatial constraints. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12553] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Orr Spiegel
- Department of Environmental Science and Policy University of California Davis, Wickson Hall One Shields Avenue Davis CA 95616 USA
| | - Stephan T. Leu
- School of Biological Sciences Flinders University GPO Box 2100 Adelaide SA Australia
| | - Andrew Sih
- Department of Environmental Science and Policy University of California Davis, Wickson Hall One Shields Avenue Davis CA 95616 USA
| | - C. Michael Bull
- School of Biological Sciences Flinders University GPO Box 2100 Adelaide SA Australia
| |
Collapse
|
29
|
Leu ST, Jackson G, Roddick JF, Bull CM. Lizard movement tracks: variation in path re-use behaviour is consistent with a scent-marking function. PeerJ 2016; 4:e1844. [PMID: 27019790 PMCID: PMC4806635 DOI: 10.7717/peerj.1844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/03/2016] [Indexed: 11/20/2022] Open
Abstract
Individual movement influences the spatial and social structuring of a population. Animals regularly use the same paths to move efficiently to familiar places, or to patrol and mark home ranges. We found that Australian sleepy lizards (Tiliqua rugosa), a monogamous species with stable pair-bonds, repeatedly used the same paths within their home ranges and investigated whether path re-use functions as a scent-marking behaviour, or whether it is influenced by site familiarity. Lizards can leave scent trails on the substrate when moving through the environment and have a well-developed vomeronasal system to detect and respond to those scents. Path re-use would allow sleepy lizards to concentrate scent marks along these well-used trails, advertising their presence. Hypotheses of mate attraction and mating competition predict that sleepy lizard males, which experience greater intra-sexual competition, mark more strongly. Consistent with those hypotheses, males re-used their paths more than females, and lizards that showed pairing behaviour with individuals of the opposite sex re-used paths more than unpaired lizards, particularly among females. Hinterland marking is most economic when home ranges are large and mobility is low, as is the case in the sleepy lizard. Consistent with this strategy, re-used paths were predominantly located in the inner 50% home range areas. Together, our detailed movement analyses suggest that path re-use is a scent marking behaviour in the sleepy lizard. We also investigated but found less support for alternative explanations of path re-use behaviour, such as site familiarity and spatial knowledge. Lizards established the same number of paths, and used them as often, whether they had occupied their home ranges for one or for more years. We discuss our findings in relation to maintenance of the monogamous mating system of this species, and the spatial and social structuring of the population.
Collapse
Affiliation(s)
- Stephan T Leu
- School of Biological Sciences, Flinders University , Adelaide, South Australia , Australia
| | - Grant Jackson
- School of Computer Science, Engineering and Mathematics, Flinders University , Adelaide, South Australia , Australia
| | - John F Roddick
- School of Computer Science, Engineering and Mathematics, Flinders University , Adelaide, South Australia , Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University , Adelaide, South Australia , Australia
| |
Collapse
|
30
|
Artificial Water Point for Livestock Influences Spatial Ecology of a Native Lizard Species. PLoS One 2016; 11:e0147433. [PMID: 26800274 PMCID: PMC4723013 DOI: 10.1371/journal.pone.0147433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022] Open
Abstract
Pastoralism is a major agricultural activity in drier environments, and can directly and indirectly impact native species in those areas. We investigated how the supply of an artificial watering point to support grazing livestock affected movement and activity patterns of the Australian sleepy lizard (Tiliqua rugosa) during a drought year. We observed 23 adult lizards; six had access to a dam, whereas 17 lizards did not. Lizards with access to the dam had larger home ranges, were substantially active on more days (days with >100 steps), and moved more steps per day compared to lizards that did not have access to the dam, both during the early and late period of our observation. Furthermore, while the two groups of lizards had similar body condition early in the season, they differed later in the season. Lizards with dam access retained, whereas lizards without access lost body condition. Local heterogeneity in access to an artificial water resource resulted in spatially dependent behavioural variation among sleepy lizard individuals. This suggests that sleepy lizards have flexible responses to changing climatic conditions, depending on the availability of water. Furthermore, while reducing activity appears a suitable short term strategy, if harsh conditions persist, then access to dams could be of substantial benefit and could support sustained lizard activity and movement and allow maintenance of body condition. Hence, artificial watering points, such as the dams constructed by pastoralists, may provide local higher quality refugia for sleepy lizards and other species during drought conditions.
Collapse
|
31
|
Jones AR, Bull CM, Brook BW, Wells K, Pollock KH, Fordham DA. Tick exposure and extreme climate events impact survival and threaten the persistence of a long-lived lizard. J Anim Ecol 2016; 85:598-610. [PMID: 26559641 DOI: 10.1111/1365-2656.12469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022]
Abstract
Assessing the impacts of multiple, often synergistic, stressors on the population dynamics of long-lived species is becoming increasingly important due to recent and future global change. Tiliqua rugosa (sleepy lizard) is a long-lived skink (>30 years) that is adapted to survive in semi-arid environments with varying levels of parasite exposure and highly seasonal food availability. We used an exhaustive database of 30 years of capture-mark-recapture records to quantify the impacts of both parasite exposure and environmental conditions on the lizard's survival rates and long-term population dynamics. Lizard abundance was relatively stable throughout the study period; however, there were changing patterns in adult and juvenile apparent survival rates, driven by spatial and temporal variation in levels of tick exposure and temporal variation in environmental conditions. Extreme weather events during the winter and spring seasons were identified as important environmental drivers of survival. Climate models predict a dramatic increase in the frequency of extreme hot and dry winter and spring seasons in our South Australian study region; from a contemporary probability of 0.17 up to 0.47-0.83 in 2080 depending on the emissions scenario. Our stochastic population model projections showed that these future climatic conditions will induce a decline in the abundance of this long-lived reptile of up to 67% within 30 years from 2080, under worst case scenario modelling. The results have broad implications for future work investigating the drivers of population dynamics and persistence. We highlight the importance of long-term data sets and accounting for synergistic impacts between multiple stressors. We show that predicted increases in the frequency of extreme climate events have the potential to considerably and negatively influence a long-lived species, which might previously have been assumed to be resilient to environmental perturbations.
Collapse
Affiliation(s)
- Alice R Jones
- The Environment Institute & School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - Barry W Brook
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Konstans Wells
- The Environment Institute & School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth H Pollock
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Damien A Fordham
- The Environment Institute & School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
32
|
Leu ST, Farine DR, Wey TW, Sih A, Bull CM. Environment modulates population social structure: experimental evidence from replicated social networks of wild lizards. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Fenner AL, Majoros PN, Bull CM. Scatting behaviour of the sleepy lizard, Tiliqua rugosa. T ROY SOC SOUTH AUST 2015. [DOI: 10.1080/03721426.2015.1074341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Maute K, French K, Bull CM, Story P, Hose G. Current insecticide treatments used in locust control have less of a short-term impact on Australian arid-zone reptile communities than does temporal variation. WILDLIFE RESEARCH 2015. [DOI: 10.1071/wr14194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Despite the regular use of pesticides to control locusts, there is a lack of information on the effects of locust-control treatments on reptiles worldwide. Exposure to pesticides poses a significant potential hazard to small reptiles, both from the direct effects of exposure, and indirectly because of their largely insectivorous diet and small home ranges.
Aims
Our study aimed to monitor the effects of two insecticides applied operationally for locust control in Australia. A phenyl pyrazole pesticide, fipronil, and a fungal biopesticide, Metarhizium acridium (Green Guard®), were applied aerially in either a barrier or block treatment in the absence of dense locust populations, and effects on non-target arid-zone reptiles were measured.
Methods
We monitored reptile-abundance and community-composition responses to treatments using a large field-based pitfall-trapping experiment, with replicated control and spraying treatments, which approximated the scale of aerial-based locust-control operations in Australia.
Key results
Neither reptile abundance nor community composition was significantly affected by locust-control treatments. However, both abundance and community composition as detected by pitfall trapping changed over time, in both control and treatment plots, possibly as a result of a decrease in annual rainfall.
Conclusions
The absence of any significant short-term pesticide treatment effects in our study suggests that the two locust-control application methods studied present a relatively insignificant hazard to reptiles at our site, based on a single application. Similar to other areas of Australia, climate and other factors are likely to be stronger drivers of reptile abundance and community structure.
Implications
Monitoring over an area that approximates the scale of the current locust-control operations is an important step in understanding the possible effects of current pesticide exposure on reptile populations and will inform insecticide risk assessments in Australia. However, important information on the immediate response of individuals to insecticide application and long-term effects of exposure are missing. The preliminary research reported in the present paper should be complemented by future investigations on long-term and sublethal impacts of pesticide exposure on Australian native reptiles and the possible benefits provided to reptiles by the resource pulses represented in untreated high-density locust populations.
Collapse
|
35
|
A contact-based social network of lizards is defined by low genetic relatedness among strongly connected individuals. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Lattanzio MS, Miles DB. Ecological divergence among colour morphs mediated by changes in spatial network structure associated with disturbance. J Anim Ecol 2014; 83:1490-500. [DOI: 10.1111/1365-2656.12252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/20/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew S. Lattanzio
- Department of Biological Sciences; Ohio University; 107 Irvine Hall Athens OH 45701 USA
| | - Donald B. Miles
- Department of Biological Sciences; Ohio University; 107 Irvine Hall Athens OH 45701 USA
| |
Collapse
|