1
|
Joint temporal trends in river thermal and hydrological conditions can threaten the downstream migration of the critically endangered European eel. Sci Rep 2021; 11:16927. [PMID: 34413393 PMCID: PMC8377086 DOI: 10.1038/s41598-021-96302-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022] Open
Abstract
Climate change is modifying the hydrological and thermal regimes of rivers worldwide, threatening the triggering of organisms’ key life-cycle processes. European eel (Anguilla anguilla) is a critically endangered fish species that migrates over several thousand kilometres between its rearing habitats in continental waters of Europe and North Africa and its spawning area in the Sargasso Sea. Downstream migration of adult eels occurs during periods of decreasing river water temperature associated with high discharge but changes in these environmental cues may affected eel migratory conditions. An innovative multivariate method was developed to analyse long-term datasets of daily water temperature, discharge and eel passage in two European rivers. Over the past 50 years, water temperature and discharge increased in both rivers during the downstream migration period from August to November. Silver eels preferentially migrated at temperatures between 10 and 20 °C combined with high discharge. Environmental changes have resulted in the migration of silver eels under warmer water temperatures. This example illustrates how the changes in environmental cues have led to a growing mismatch between the migratory conditions preferentially selected and those actually used, which may threaten the completion of the eel’s life cycle and ultimately the persistence of this already critically endangered species.
Collapse
|
2
|
Duval E, Skaala Ø, Quintela M, Dahle G, Delaval A, Wennevik V, Glover KA, Hansen MM. Long-term monitoring of a brown trout (Salmo trutta) population reveals kin-associated migration patterns and contributions by resident trout to the anadromous run. BMC Ecol Evol 2021; 21:143. [PMID: 34256705 PMCID: PMC8276402 DOI: 10.1186/s12862-021-01876-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In species showing partial migration, as is the case for many salmonid fishes, it is important to assess how anthropogenic pressure experienced by migrating individuals affects the total population. We focused on brown trout (Salmo trutta) from the Guddal River in the Norwegian Hardanger Fjord system, which encompasses both resident and anadromous individuals. Aquaculture has led to increased anthropogenic pressure on brown trout during the marine phase in this region. Fish traps in the Guddal River allow for sampling all ascending anadromous spawners and descending smolts. We analyzed microsatellite DNA markers from all individuals ascending in 2006-2016, along with all emigrating smolts in 2017. We investigated (1) if there was evidence for declines in census numbers and effective population size during that period, (2) if there was association between kinship and migration timing in smolts and anadromous adults, and (3) to what extent resident trout were parents of outmigrating smolts. RESULTS Census counts of anadromous spawners showed no evidence for a decline from 2006 to 2016, but were lower than in 2000-2005. Estimates of effective population size also showed no trends of declines during the study period. Sibship reconstruction of the 2017 smolt run showed significant association between kinship and migration timing, and a similar association was indicated in anadromous spawners. Parentage assignment of 2017 smolts with ascending anadromous trout as candidate parents, and assuming that unknown parents represented resident trout, showed that 70% of smolts had at least one resident parent and 24% had two resident parents. CONCLUSIONS The results bear evidence of a population that after an initial decline has stabilized at a lower number of anadromous spawners. The significant association between kinship and migration timing in smolts suggests that specific episodes of elevated mortality in the sea could disproportionally affect some families and reduce overall effective population size. Finally, the results based on parentage assignment demonstrate a strong buffering effect of resident trout in case of elevated marine mortality affecting anadromous trout, but also highlight that increased mortality of anadromous trout, most of which are females, may lower overall production in the system.
Collapse
Affiliation(s)
- Eloïse Duval
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.
- Theoretical and Experimental Ecology Station, UMR-5321, CNRS, University of Toulouse III Paul Sabatier, 2 route du CNRS, 09200, Moulis, France.
| | - Øystein Skaala
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway.
| | - María Quintela
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
| | - Geir Dahle
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
| | - Aurélien Delaval
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Vidar Wennevik
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
| | - Kevin A Glover
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Michael M Hansen
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.
- Department of Aquaculture, Institute of Marine Research, Nordnes, P.O. Box 1870, 5817, Bergen, Norway.
| |
Collapse
|