1
|
Divito F, De Simone GA, Pompilio L, Manrique G. Temporal and Spatial Patterns of Mating in Rhodnius prolixus. INSECTS 2025; 16:312. [PMID: 40266786 PMCID: PMC11943234 DOI: 10.3390/insects16030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
The kissing bug Rhodnius prolixus is a nocturnal species; however, its temporal mating patterns remain unexplored. Copulation lasts about fifty minutes, during which time the couple remains almost motionless. We hypothesized that R. prolixus copulates within shelters to reduce its vulnerability. To test this, we examined the spatial and temporal patterns of its copulation, as well as the potential endogenous regulation of its circadian rhythm, under three conditions: a light:dark cycle (L/D), constant light (L/L), and constant darkness (D/D). Over ten days, the number and the timing of copulation of pairs in arenas containing a shelter were video-recorded. Under the L/D cycle, the pairs mated mainly during daylight hours. This rhythm persisted under the D/D cycle, with a peak extending from the first half of the subjective day to the first half of the subjective night. No rhythm was observed under the L/L cycle. A greater proportion of mating occurred within the shelters during the L/D and L/L cycles, whereas its spatial distribution was random under the D/D cycle. Our results reveal an endogenously controlled circadian rhythm of mating behavior, with mating activity mainly occurring during daylight hours. Additionally, we showed that the pairs copulated inside the shelters. These results provide new insights into the reproductive behavior of R. prolixus.
Collapse
Affiliation(s)
- Franco Divito
- Laboratorio de Fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, UBA-CONICET, Buenos Aires C1428EGA, Argentina; (F.D.); (G.A.D.S.)
| | - Gabriel A. De Simone
- Laboratorio de Fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, UBA-CONICET, Buenos Aires C1428EGA, Argentina; (F.D.); (G.A.D.S.)
| | - Lorena Pompilio
- Laboratorio de Ecología y Comportamiento Animal, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA, UBA-CONICET, Buenos Aires C1428EGA, Argentina;
| | - Gabriel Manrique
- Laboratorio de Fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, UBA-CONICET, Buenos Aires C1428EGA, Argentina; (F.D.); (G.A.D.S.)
| |
Collapse
|
2
|
Brueggemann L, Singh P, Müller C. Life Stage- and Sex-Specific Sensitivity to Nutritional Stress in a Holometabolous Insect. Ecol Evol 2025; 15:e70764. [PMID: 39839333 PMCID: PMC11748456 DOI: 10.1002/ece3.70764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Over lifetime, organisms can be repeatedly exposed to stress, shaping their phenotype. At certain, so-called sensitive phases, individuals might be more receptive to such stress, for example, nutritional stress. However, little is known about how plastic responses differ between individuals experiencing nutritional stress early versus later in life or repeatedly, particularly in species with distinct ontogenetic niches. Moreover, there may be sex-specific differences due to distinct physiology. Larvae of the holometabolous turnip sawfly, Athalia rosae, consume leaves and flowers, while the adults take up nectar. We examined the effects of starvation experienced at different life stages on life-history, adult behavioural and metabolic traits to determine which stage may be more sensitive and how specific these traits respond. We exposed individuals to four nutritional regimes, either no, larval, adult starvation or starvation periods as larvae and adults. Larvae exposed to starvation had a prolonged development, and starved females reached a lower initial adult body mass than non-starved individuals. Males did not differ in initial adult body mass regardless of larval starvation, suggesting the ability to conform well to poor nutritional conditions. Adult behavioural activity was not significantly impacted by larval or adult starvation. Individuals starved as larvae had similar carbohydrate and lipid (i.e., fatty acid) contents as non-starved individuals, potentially due to building up energy reserves during development, while starvation during adulthood or at both stages led to reduced energy reserves in males. This study indicates that the sensitivity of a life stage to stress depends on the specific trait under consideration. Life-history traits were mainly affected by larval stress, while activity appeared to be more robust and metabolism mostly impacted by the adult conditions. Individuals differed in their ability to conform to the given environment, with the responses being life stage- and sex-specific.
Collapse
Affiliation(s)
- Leon Brueggemann
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Pragya Singh
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Caroline Müller
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| |
Collapse
|
3
|
Viteri JA, Temporal S, Schulz DJ. Distinct Strategies Regulate Correlated Ion Channel mRNAs and Ionic Currents in Continually versus Episodically Active Neurons. eNeuro 2024; 11:ENEURO.0320-24.2024. [PMID: 39496483 PMCID: PMC11574698 DOI: 10.1523/eneuro.0320-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Relationships among membrane currents allow central pattern generator (CPG) neurons to reliably drive motor programs. We hypothesize that continually active CPG neurons utilize activity-dependent feedback to correlate expression of ion channel genes to balance essential membrane currents. However, episodically activated neurons experience absences of activity-dependent feedback and, thus, presumably employ other strategies to coregulate the balance of ionic currents necessary to generate appropriate output after periods of quiescence. To investigate this, we compared continually active pyloric dilator (PD) neurons with episodically active lateral gastric (LG) CPG neurons of the stomatogastric ganglion (STG) in male Cancer borealis crabs. After experimentally activating LG for 8 h, we measured three potassium currents and abundances of their corresponding channel mRNAs. We found that ionic current relationships were correlated in LG's silent state, but ion channel mRNA relationships were correlated in the active state. In continuously active PD neurons, ion channel mRNAs and ionic currents are simultaneously correlated. Therefore, two distinct relationships exist between channel mRNA abundance and the ionic current encoded in these cells: in PD, a direct correlation exists between Shal channel mRNA levels and the A-type potassium current it carries. Conversely, such channel mRNA-current relationships are not detected and appear to be temporally uncoupled in LG neurons. Our results suggest that ongoing feedback maintains membrane current and channel mRNA relationships in continually active PD neurons, while in LG neurons, episodic activity serves to establish channel mRNA relationships necessary to produce the ionic current profile necessary for the next bout of activity.
Collapse
Affiliation(s)
- Jose A Viteri
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| | - Simone Temporal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
4
|
Fischer A, De Vita N, Phillips Sproule S, Gries G. Starving infecund widow spiders maintain sexual attractiveness and trade off safety for enhanced prey capture. iScience 2024; 27:110722. [PMID: 39280632 PMCID: PMC11396026 DOI: 10.1016/j.isci.2024.110722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Starving animals must balance their resources between immediate survival and future reproduction. False widow spiders, Steatoda grossa, inhabit indoor settings with scarce prey. Here, we investigated the effects of lengthy starvation on the physiology, web architecture, sexual signaling, and reproductive success of S. grossa females. Compared to well-fed females, starving females (1) lost body mass faster, (2) had lower survival, (3) produced more silk for prey capture than for safety, and (4) deposited less contact pheromone components on their webs but accelerated their hydrolysis to mate-attractant components. As starving females became infecund - but still attracted and copulated with males - they misguided males that would gain reproductive fitness by selecting fecund females. Whether starving females store sperm and potentially regain fecundity upon feeding is still unknown. Our study shows how prey shortage shapes sexual signaling, predation, and reproductive behavior of S. grossa females that seem to engage in deceptive signaling.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
- Department of General and Systematic Zoology, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Natalie De Vita
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Sophia Phillips Sproule
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
5
|
Franks NR, Worley A, Fortune GT, Goldstein RE, Sendova-Franks AB. Seeking safety: Movement dynamics after post-contact immobility. PLoS One 2024; 19:e0307370. [PMID: 39172761 PMCID: PMC11340899 DOI: 10.1371/journal.pone.0307370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/03/2024] [Indexed: 08/24/2024] Open
Abstract
Post-contact immobility (PCI) is a final attempt to avoid predation. Here, for the first time, we examine the pattern of movement and immobility when antlion larvae resume activity after PCI. To simulate contact with, and escape from, a predator we dropped the larvae onto three different substrates: Paper, Shallow sand (2.3mm-deep) and Deep sand (4.6mm-deep). The Paper lining a Petri dish represented a hard surface that antlion larvae could not penetrate to hide. The Shallow sand permitted the antlions to dig but not to submerge completely whereas the Deep sand allowed them both to dig and to submerge. We tracked their paths automatically and recorded alternating immobility and movement durations over 90min. On the impenetrable substrate, antlion larvae showed super-diffusive dispersal, their movement durations became longer, their immobility durations became shorter and their instantaneous speeds increased. This is consistent with the antlions needing to leave an area of hard substrate and quickly to find somewhere to hide. On Shallow sand, antlion larvae exhibited a modest increase in movement duration, a modest decrease in immobility duration and a concomitant diffusive dispersal. This is consistent with their use of a spiral search, presumably for a suitable depth of sand, to conceal themselves. On Deep sand, the movement and immobility durations of the antlion larvae did not change and their dispersal was sub-diffusive because they were able to bury themselves. On Paper, the distribution of immobility durations had a long tail, consistent with a log-normal distribution. On Shallow and Deep sand, most of the distribution was fitted better by a power law or a log-normal. Our results suggest that PCI in antlion larvae is a disruptive event and that post-PCI movement and immobility gradually return to the pattern typical of intermittent locomotion, depending on the scope for burying and hiding in the substrate.
Collapse
Affiliation(s)
- Nigel R. Franks
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Alan Worley
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - George T. Fortune
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Cueva Del Castillo R, Elias-Quevedo A, Medrano JV, Ruíz-Flores A, Flores-Ortiz CM. Potential strategic allocation of nuptial gift proteins of the neotropical katydid Conocephalus ictus (Orthoptera Tettigoniidae). JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104633. [PMID: 38554814 DOI: 10.1016/j.jinsphys.2024.104633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In many katydids, the male feeds his mate with a large gelatinous spermatophore. While providing large spermatophores can increase female fecundity and lifespan, it may also decrease their sexual receptivity, benefiting male fitness. Allocating resources to these edible gifts may entail a lower apportionment of them to other functions, generating a trade-off between somatic and reproductive functions. Despite their effect on male and female fitness, little is known of the compounds associated with katydid spermatophores. Our study found 177 different putative proteins in the spermatophore of Conocephalus ictus, with no correlation between male body size with spermatophore mass, number, concentration and mass of proteins. However, we did observe a negative relationship between male forewing length and protein concentration, and a negative relationship between the mass of the spermatophore transferred to the females and their body size, suggesting a resource allocation trade-off in males, but also strategic transference of resources based on female quality.
Collapse
Affiliation(s)
| | - Anahi Elias-Quevedo
- UBIPRO, Facultad de Estudios Superiores Iztacala, A.P. 314, Tlalnepantla 54090. Mexico
| | | | - Anabel Ruíz-Flores
- UBIPRO, Facultad de Estudios Superiores Iztacala, A.P. 314, Tlalnepantla 54090. Mexico
| | - César M Flores-Ortiz
- UBIPRO, Facultad de Estudios Superiores Iztacala, A.P. 314, Tlalnepantla 54090. Mexico
| |
Collapse
|
7
|
Trotta V, Forlano P, Caccavo V, Fanti P, Battaglia D. Transgenerational plasticity in aphids reared in a poor-resource environment. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100081. [PMID: 38694273 PMCID: PMC11061699 DOI: 10.1016/j.cris.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The changing environmental conditions can affect insect biology over multiple generations and phenotypic plasticity is important for coping with these changes. Transgenerational plasticity occurs when the environment in which the parents developed influences the plastic response of the offspring phenotype. In the present study, the plastic effects of resource limitation on important life history traits such as body size, fecundity, survival, and resistance to starvation of the pea aphid Acyrthosiphon pisum were investigated over two generations. This study focused on understanding how resource limitation can determine an adaptive expression of maternal effects and transgenerational plasticity in fitness-related traits. Aphids showed phenotypic plasticity for the life history traits investigated, as they performed better when grown in an optimal environment than in a resource-poor one. Also, aphids had a poorer performance if their mothers were raised in a resource-poor environment. The effects of transgenerational plasticity were observed only in response to resistance to starvation, through increased survival in the offspring of the mother reared in a resource-poor environment, suggesting an evolutionary bet-hedging strategy. The results of this study showed that the effects of adaptive transgenerational plasticity may be partially masked in stressful environments, where developmental problems instead predominate. More information on the transgenerational response to resource limitation across generations can contribute to a better understanding of aphid biology.
Collapse
Affiliation(s)
- Vincenzo Trotta
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Pierluigi Forlano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Vittoria Caccavo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Paolo Fanti
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Donatella Battaglia
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
8
|
Targa G, Mottarlini F, Rizzi B, Taddini S, Parolaro S, Fumagalli F, Caffino L. Anorexia-Induced Hypoleptinemia Drives Adaptations in the JAK2/STAT3 Pathway in the Ventral and Dorsal Hippocampus of Female Rats. Nutrients 2024; 16:1171. [PMID: 38674862 PMCID: PMC11054075 DOI: 10.3390/nu16081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Leptin is an appetite-regulating adipokine that is reduced in patients with anorexia nervosa (AN), a psychiatric disorder characterized by self-imposed starvation, and has been linked to hyperactivity, a hallmark of AN. However, it remains unknown how leptin receptor (LepR) and its JAK2-STAT3 downstream pathway in extrahypothalamic brain areas, such as the dorsal (dHip) and ventral (vHip) hippocampus, crucial for spatial memory and emotion regulation, may contribute to the maintenance of AN behaviors. Taking advantage of the activity-based anorexia (ABA) model (i.e., the combination of food restriction and physical activity), we observed reduced leptin plasma levels in adolescent female ABA rats at the acute phase of the disorder [post-natal day (PND) 42], while the levels increased over control levels following a 7-day recovery period (PND49). The analysis of the intracellular leptin pathway revealed that ABA rats showed an overall decrease of the LepR/JAK2/STAT3 signaling in dHip at both time points, while in vHip we observed a transition from hypo- (PND42) to hyperactivation (PND49) of the pathway. These changes might add knowledge on starvation-induced fluctuations in leptin levels and in hippocampal leptin signaling as initial drivers of the transition from adaptative mechanisms to starvation toward the maintenance of aberrant behaviors typical of AN patients, such as perpetuating restraint over eating.
Collapse
Affiliation(s)
- Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
- Center for Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| |
Collapse
|
9
|
Scharf I, Hanna K, Gottlieb D. Experimental arena settings might lead to misinterpretation of movement properties. INSECT SCIENCE 2024; 31:271-284. [PMID: 37231528 DOI: 10.1111/1744-7917.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Movement is an important animal behavior contributing to reproduction and survival. Animal movement is often examined in arenas or enclosures under laboratory conditions. We used the red flour beetle (Tribolium castaneum) to examine here the effect of the arena size, shape, number of barriers, access to the arena's center, and illumination on six movement properties. We demonstrate great differences among arenas. For example, the beetles moved over longer distances in clear arenas than in obstructed ones. Movement along the arena's perimeter was greater in smaller arenas than in larger ones. Movement was more directional in round arenas than in rectangular ones. In general, the beetles stopped moving closer to the perimeter and closer to corners (in the square and rectangular arenas) than expected by chance. In some cases, the arena properties interacted with the beetle sex to affect several movement properties. All these suggest that arena properties might also interact with experimental manipulations to affect the outcome of studies and lead to results specific to the arena used. In other words, instead of examining animal movement, we in fact examine the animal interaction with the arena structure. Caution is therefore advised in interpreting the results of studies on movement in arenas under laboratory conditions and we recommend paying attention also to barriers or obstacles in field experiments. For instance, movement along the arena's perimeter is often interpreted as centrophobism or thigmotaxis but the results here show that such movement is arena dependent.
Collapse
Affiliation(s)
- Inon Scharf
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Kimberley Hanna
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Gottlieb
- Department of Food Science, Institute of Post-Harvest and Food Science, Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
10
|
Zhang H, Li G, Li C, Chen J, Zhao Z, Zhang S, Liu J. Feeding mediated web-building plasticity in a cobweb spider. Curr Zool 2023; 69:756-765. [PMID: 37876637 PMCID: PMC10591150 DOI: 10.1093/cz/zoac077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 10/26/2023] Open
Abstract
Behavioral plasticity has been proposed as a means by which animals alter their phenotypes in response to changing conditions. Animals may display behavioral plasticity as a consequence of environmental variation. The detritus-based, bell-shaped cobweb spider Campanicola campanulata is an ideal model to study behavioral plasticity, because its web architecture is easy to be quantified, and the functions of different parts of the web are clear. Though the plasticity of cobweb architecture has been reported in a few species, retreats as important defensive structures have rarely been considered before because retreats in most cobwebs are relatively small compared with the web size. We studied the web-building behaviors of C. campanulata under different feeding regimes. We set up 3 spider treatments with different feeding conditions: marginally well fed, moderately well fed, and extremely well fed, and observed the differences in the web architecture among them. In addition, we measured the mechanical properties of anchor silk, and also calculated the foraging and defense investment of the spiders. The results showed that marginally well-fed spiders build cobwebs with significantly longer length of anchor silk, lower retreat to the ground, more number and longer gumfooted lines, and larger capture area, while extremely well-fed spiders build cobwebs with significantly bigger retreat volume and higher height of retreat to the ground. In addition, marginally well-fed spiders invest significantly less during cobweb construction. However, there was no significant difference between the breaking force and elongation at break in anchor silk among different treatments. These results demonstrated that marginally well-fed spiders invest more in foraging, and extremely well-fed spiders invest more in defense, and the spider made a balance between foraging and predator avoidance in response to changes in physiological state. Our study strengthens the current understanding of web construction in cobweb spiders, especially those facing high costs during retreat construction.
Collapse
Affiliation(s)
- Haixin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Jian Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zeyu Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jie Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
11
|
Zhu Y, Song L, Chen L, Yun Y, Zhang W, Zhao Y, Peng Y. Energy Allocation of the Wolf Spider Pardosa pseudoannulata under Dietary Restriction. INSECTS 2023; 14:579. [PMID: 37504586 PMCID: PMC10380717 DOI: 10.3390/insects14070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The phenomenon of food shortage is widespread in spider populations, which has a great impact on their growth, development, and survival. Pardosa pseudoannulata is a dominant spider species in rice fields and has an important controlling effect on rice pests. In this study, three feeding levels were tested at the juvenile stage (H, high feeding; M, medium dietary restriction; L, severe dietary restriction) and two at the adult stage (H and L). A total of six feeding levels were tested to explore the effects of dietary restriction on the development, longevity, nutrient content, and predation by P. pseudoannulata [HH (control group), HL, MH, ML, LH, LL]. The results showed that continuous dietary restriction (ML and LL groups) had negative impacts on the growth of P. pseudoannulata and positive impacts on longevity. Spiderlings suffered from dietary restrictions during the juvenile period, and when the restrictions were removed upon reaching adulthood (MH and LH groups), their lifespan started decreasing whilst their weight began returning to normal. This suggested that there might be a trade-off between the growth and longevity of the spider under dietary restrictions. The study also found that when food was severely restricted in the juvenile stage (LH and LL groups), the nutrient contents of the adult spider could return to the same level as the control group, but the predatory ability decreased. When food was moderately restricted in the juvenile stage (MH and ML groups), the predatory ability of the adult spiders improved, while nutrients of the adult spiders declined. Our results will provide an empirical basis for the protection and effective use of dominant spider species in agricultural fields.
Collapse
Affiliation(s)
- Yang Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Li Song
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Limi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
12
|
Pompka A, Szulińska E, Kafel A. Starvation and cadmium affect energy reserves and oxidative stress in individuals of Spodoptera exigua. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1346-1355. [PMID: 36173496 PMCID: PMC9652202 DOI: 10.1007/s10646-022-02588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Different factors, such as starvation and metal exposure, may affect development and cause oxidative stress in insects. Some host plants may contain a high concentration of cadmium due to their hyperaccumulating property. The negative effects of metals and hunger may be manifested by low availability of energetic substrates. This study aimed to assess whether the insect population with a history of long metal exposure may better manage metal stress or/and starvation at different developmental stages, with the use of energetic substrates. Two strains of Spodoptera exigua model organism were tested: control strain and cadmium strain (treated continuously for over 200 generations with subtoxic amounts of cadmium). The effects of different factors, individually and in combination, on the tested strains were assessed, first by determining the body weight of larvae and pupae and then by estimating the concentration of biomolecules (proteins, carbohydrates, lipids, or glycogen) in the 4th and 5th larval stages and in pupae, and the total antioxidant capacity and lipid peroxidation level in the 4th larval stage. Compared to control strain, cadmium strain individuals exhibited changes in the concentration of soluble carbohydrates and protein. This was partly related to earlier 1-day starvation. In particular, changes in carbohydrate concentration seemed to be a sensitive biomarker of metal stress, independent of the age of individuals and period of starvation. However, the increase in the total antioxidant capacity and the concentration of lipid peroxidation products in the 4th larval stage under the effect of cadmium was dependent on strain origin.
Collapse
Affiliation(s)
- Anna Pompka
- Department of Natural Sciences, University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland.
| | - Elżbieta Szulińska
- Department of Natural Sciences, University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland
| | - Alina Kafel
- Department of Natural Sciences, University of Silesia in Katowice, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland
| |
Collapse
|
13
|
Rosenheim JA, Schreiber SJ. Pathways to the density-dependent expression of cannibalism, and consequences for regulated population dynamics. Ecology 2022; 103:e3785. [PMID: 35818739 DOI: 10.1002/ecy.3785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Cannibalism, once viewed as a rare or aberrant behavior, is now recognized to be widespread and to contribute broadly to the self-regulation of many populations. Cannibalism can produce endogenous negative feedback on population growth because it is expressed as a conditional behavior, responding to the deteriorating ecological conditions that flow, directly or indirectly, from increasing densities of conspecifics. Thus, cannibalism emerges as a strongly density-dependent source of mortality. In this synthesis, we review recent research that has revealed a rich diversity of pathways through which rising density elicits increased cannibalism, including both factors that (a) elevate the rate of dangerous encounters between conspecifics and (b) enhance the likelihood that such encounters will lead to successful cannibalistic attacks. These pathways include both features of the autecology of cannibal populations and features of interactions with other species, including food resources and pathogens. Using mathematical models, we explore the consequences of including density-dependent cannibal attack rates on population dynamics. The conditional expression of cannibalism generally enhances stability and population regulation in single-species models but also may increase opportunities for alternative states and prey population escape from control by cannibalistic predators.
Collapse
Affiliation(s)
- Jay A Rosenheim
- Department of Entomology and Nematology, University of California, Davis, California, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
14
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
15
|
Convergent evolution of antlions and wormlions: similarities and differences in the behavioural ecology of unrelated trap-building predators. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-021-03106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Gilad T, Dorfman A, Subach A, Libbrecht R, Foitzik S, Scharf I. Evidence for the effect of brief exposure to food, but not learning interference, on maze solving in desert ants. Integr Zool 2021; 17:704-714. [PMID: 34958517 DOI: 10.1111/1749-4877.12622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theories of forgetting highlight two active mechanisms through which animals forget prior knowledge by reciprocal disruption of memories. According to "proactive interference", information learned previously interferes with the acquisition of new information, whereas "retroactive interference" suggests that newly gathered information interferes with already existing information. Our goal was to examine the possible effect of both mechanisms in the desert ant Cataglyphis niger, which does not use pheromone recruitment, when learning spatial information while searching for food in a maze. Our experiment indicated that neither proactive nor retroactive interference took place in this system although this awaits confirmation with individual-level learning assays. Rather, the ants' persistence or readiness to search for food grew with successive runs in the maze. Elevated persistence led to more ant workers arriving at the food when retested a day later, even if the maze was shifted between runs. We support this finding in a second experiment, where ant workers reached the food reward at the maze end in higher numbers after encountering food in the maze entry compared to a treatment, in which food was present only at the maze end. This result suggests that spatial learning and search persistence are two parallel behavioral mechanisms, both assisting foraging ants. We suggest that their relative contribution should depend on habitat complexity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomer Gilad
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arik Dorfman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Scharf I. The interaction between ambush predators, search patterns of herbivores, and aggregations of plants. Behav Ecol 2021. [DOI: 10.1093/beheco/arab091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
While predators benefit from spatial overlap with their prey, prey strive to avoid predators. I used an individual-based simulation comprising sit-and-wait predators, widely foraging herbivores, and plants, to examine the link between predator ambush location, herbivore movement, and plant aggregation. I used a genetic algorithm to reach the best strategies for all players. The predators could ambush herbivores either inside or outside plant patches. The herbivores could use movement of varying directionality levels, with a change in directionality following the detection of plants. When the predators were fixed outside plant patches, the herbivores were selected to use a directional movement before plant encounter followed by a tortuous movement afterwards. When predators were fixed inside patches, herbivores used a continuous directional movement. Predators maintained within-patch positions when the herbivores were fixed to use the directional-tortuous movement. The predator location inside patches led to higher plant aggregations, by changing the herbivore movement. Finally, I allowed half of the predators to search for herbivores and let them compete with sit-and-wait predators located inside plant patches. When plants were clumped and herbivores used a directional-tortuous movement, with a movement shift after plant detection, ambush predators had the highest success relative to widely foraging predators. In all other scenarios, widely foraging predators did much better than ambush predators. The findings from my simulation suggest a behavioral mechanism for several observed phenomena of predator–prey interactions, such as a shorter stay by herbivores in patches when predators ambush them nearby, and a more directional movement of herbivores in riskier habitats.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
A resource-poor developmental diet reduces adult aggression in male Drosophila melanogaster. Behav Ecol Sociobiol 2021; 75:110. [PMID: 34720349 PMCID: PMC8549984 DOI: 10.1007/s00265-021-03050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/01/2022]
Abstract
Aggressive behaviours occur throughout the animal kingdom and agonistic contests often govern access to resources. Nutrition experienced during development has the potential to influence aggressive behaviours in adults through effects on growth, energy budgets and an individual’s internal state. In particular, resource-poor developmental nutrition might decrease adult aggression by limiting growth and energy budgets, or alternatively might increase adult aggression by enhancing motivation to compete for resources. However, the direction of this relationship—and effects of developmental nutrition experienced by rivals—remains unknown in most species, limiting understanding of how early-life environments contribute to variation in aggression. We investigated these alternative hypotheses by assessing male-male aggression in adult fruit flies, Drosophila melanogaster, that developed on a low-, medium- or high-resource diet, manipulated via yeast content. We found that a low-resource developmental diet reduced the probability of aggressive lunges in adults, as well as threat displays against rivals that developed on a low-resource diet. These effects appeared to be independent of diet-related differences in body mass. Males performed relatively more aggression on a central food patch when facing rivals of a low-resource diet, suggesting that developmental diet affects aggressive interactions through social effects in addition to individual effects. Our finding that resource-poor developmental diets reduce male-male aggression in D. melanogaster is consistent with the idea that resource budgets mediate aggression and in a mass-independent manner. Our study improves understanding of the links between nutrition and aggression. Significance statement Early-life nutrition can influence social behaviours in adults. Aggression is a widespread social behaviour with important consequences for fitness. Using the fruit fly, Drosophila melanogaster, we show that a poor developmental diet reduces aspects of adult aggressive behaviour in males. Furthermore, males perform more aggression near food patches when facing rivals of poor nutrition. This suggests that early-life nutrition affects aggressive interactions through social effects in addition to individual effects.
Collapse
|
19
|
Operant conditioning in antlion larvae and its impairment following exposure to elevated temperatures. Anim Cogn 2021; 25:509-518. [PMID: 34689302 PMCID: PMC9107435 DOI: 10.1007/s10071-021-01570-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 10/31/2022]
Abstract
Although ambush predators were previously considered limited in their cognitive abilities compared to their widely foraging relatives, there is accumulating evidence it does not hold true. Pit-building antlions are already known to associate vibrations in the sand with the arrival of prey. We used a T-maze and successfully trained antlions to turn right or left against their initial turning bias, leading to a suitable substrate for digging traps. We present here the first evidence for operant conditioning and T-maze solving in antlions. Furthermore, we show that exposure of second instar larvae to an elevated temperature led to impaired retention of what was learned in a T-maze when tested after moulting into the third instar, compared to larvae raised under a more benign temperature. We suggest that climate change, involving an increase in mean temperatures as well as rare events (e.g., heatwaves) might negatively affect the retention of operant conditioning in antlions, alongside known, more frequently studied effects, such as changes in body size and distribution.
Collapse
|
20
|
Preference and Performance of the Pine-Tree Lappet Dendrolimus pini on Various Pine Species. FORESTS 2021. [DOI: 10.3390/f12091261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global commercial and recreational transport may lead to the unintentional invasion of insect species, which in turn may pose a threat to native organisms. In this study, we aimed to assess whether the economically important pest of Pinus sylvestris L., moth Dendrolimus pini L. (DP), is able to feed on nine other pine species, and how this will affect its survival, performance, growth, and development. We carried out food choice tests and a no-choice laboratory feeding experiment. We found that this insect mostly preferred its prime host, but also Pinus cembra L., Pinus contorta Douglas ex Loudon, Pinus nigra J.F.Arnold, and Pinus ponderosa Douglas ex C.Lawson. The performance test revealed a host-specific response of DP to the host plant. This response was manifested in a large variation in body mass as well as in a decrease or increase in life-history traits, such as fecundity, and wing morphology parameters. However, the larvae’s choice of particular hosts corresponded to the results of the performance test. Larvae more willingly selected food allowing better results in their performance. Larvae achieved better values of growth and development when fed on European and North American pine species or on species with two- and three-needle fascicles. In addition, attractants and repellents in needles of different pine species were chemically analyzed. Variations in the secondary metabolite composition as well as the specific leaf area of different pine species effectively explained the results found in the insects, but the content of sugars and nitrogen remains to be elucidated. We speculate that DP poses a serious threat to large areas of pine forests, if transferred, as it can survive and develop on many economically important tree species in North America and Europe.
Collapse
|
21
|
Ahronberg A, Scharf I. Social isolation interaction with the feeding regime differentially affects survival and results in a hump-shaped pattern in movement activity. Behav Processes 2021; 190:104460. [PMID: 34256142 DOI: 10.1016/j.beproc.2021.104460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
Eusocial insects depend on their colonies, and it is therefore clear why isolation triggers many negative effects on isolated individuals. Here, we examined the effect of social isolation on the desert ant Cataglyphis niger, asking whether isolation, either with access to food or under starvation, impairs survival, and whether isolation modifies movement activity and digging to bypass an obstacle. Social isolation led to shorter survival but only when food was provided. This effect might be due to food not being digested correctly under isolation. Although isolated ant workers were more active immediately post isolation than 2-24 hours later, their movement moderately increased two days post isolation. We suggest that the changes in movement activity are adaptive: first, the worker increases activity intended to reunite it with the lost colony. Then, when the colony is not found, it reduces activity to conserve energy. It later increases activity as a final attempt to detect the colony. We expected isolated workers to dig faster to bypass an obstacle, but we did not detect any effect on digging behavior. We demonstrate here the complex effects of isolation on survival and movement activity, in interaction with additional factors - feeding and isolation duration.
Collapse
Affiliation(s)
- Ariel Ahronberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Edmunds D, Wigby S, Perry JC. 'Hangry' Drosophila: food deprivation increases male aggression. Anim Behav 2021; 177:183-190. [PMID: 34290451 PMCID: PMC8274700 DOI: 10.1016/j.anbehav.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Abstract
Aggressive interactions are costly, such that individuals should display modified aggression in response to environmental stress. Many organisms experience frequent periods of food deprivation, which can influence an individual's capacity and motivation to engage in aggression. However, because food deprivation can simultaneously decrease an individual's resource-holding potential and increase its valuation of food resources, its net impact on aggression is unclear. Here, we tested the influence of increasingly prolonged periods of adult food deprivation on intermale aggression in pairs of fruit flies, Drosophila melanogaster. We found that males displayed increased aggression following periods of food deprivation longer than a day. Increased aggression in food-deprived flies occurred despite their reduced mass. This result is probably explained by an increased attraction to food resources, as food deprivation increased male occupancy of central food patches, and food patch occupancy was positively associated with aggression. Our findings demonstrate that aggressive strategies in male D. melanogaster are influenced by nutritional experience, highlighting the need to consider past nutritional stresses to understand variation in aggression.
Collapse
Affiliation(s)
| | - Stuart Wigby
- Department of Zoology, University of Oxford, U.K
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, U.K
| | - Jennifer C. Perry
- Department of Zoology, University of Oxford, U.K
- School of Biological Sciences, University of East Anglia, U.K
| |
Collapse
|
23
|
Aita RC, Kees AM, Aukema BH, Hutchison WD, Koch RL. Effects of Starvation, Age, and Mating Status on Flight Capacity of Laboratory-Reared Brown Marmorated Stink Bug (Hemiptera: Pentatomidae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:532-540. [PMID: 33822022 DOI: 10.1093/ee/nvab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an invasive species to North America and has spread throughout most of the territory. Understanding flight in H. halys is crucial to understanding the dispersal capacity and developing forecasting models for this pest. The purpose of this research was to assess the effects of starvation, age, mating status, sex, and preflight weight on flight parameters of laboratory-reared H. halys using computer-monitored flight mills. The mean flight distance observed over a 24-h period was 266 m and the maximum distance was 7.3 km. Overall, the flight capacity of males and females was similar, even though females weighed more than males. The proportion of H. halys that initiated flight was not affected by starvation, age, or mating status. The number of bouts of individual flights and velocity significantly increased with longer durations of starvation. The number of bouts significantly decreased with increasing age. The total distance flew and total flight time was not affected by starvation, age, or mating status. Although some statistical differences were seen across the experiments, these differences likely represent minimal ecological significance. Therefore, these results suggest that H. halys are remarkably resilient, which may contribute to their success as an invasive species. The findings of this study could help better predict the dispersal potential of H. halys in Minnesota.
Collapse
Affiliation(s)
- Rafael Carlesso Aita
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Aubree M Kees
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - W D Hutchison
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Robert L Koch
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
24
|
Toft S, Lange CS, Kristensen L. Food limitation and starvation independently affect predator macronutrient selection. Biol Lett 2021; 17:20210095. [PMID: 33947217 DOI: 10.1098/rsbl.2021.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Predators are often food limited in their habitat, and some are limited by specific macronutrients (protein, lipid or carbohydrate). It is unresolved, however, to what extent and in what way food and macronutrient limitation are connected. Using a carabid beetle (Nebria brevicollis), we compared macronutrient self-selection of the animals three times: immediately after collection in the field, after being fed to satiation and nutritional balance and after a subsequent period of starvation. Both sexes were food and females lipid limited in the field; after 7-21 days of starvation both sexes increased proportional carbohydrate intake significantly. Thus, starvation created a nutrient deficit that was different from what the animals had experienced in the field. We conclude that while macronutrient limitation in nature may be influenced by hunger due to food limitation, this is not its main determinant. A nutritional imbalance of available food may override this effect.
Collapse
Affiliation(s)
- Søren Toft
- Department of Biology, Aarhus University, Ny Munkegade 116, DK-Aarhus C, Denmark
| | | | - Line Kristensen
- Department of Biology, Aarhus University, Ny Munkegade 116, DK-Aarhus C, Denmark
| |
Collapse
|
25
|
Manzoli DE, Saravia-Pietropaolo MJ, Arce SI, Percara A, Antoniazzi LR, Beldomenico PM. Specialist by preference, generalist by need: availability of quality hosts drives parasite choice in a natural multihost-parasite system. Int J Parasitol 2021; 51:527-534. [PMID: 33713648 DOI: 10.1016/j.ijpara.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Encountering suitable hosts is key for parasite success. A general assumption for disease transmission is that the contact of a parasite with a potential host is driven by the density or relative frequency of hosts. That assumption ignores the potential role of differential host attractiveness for parasites that can drive the encounter of hosts. It has been posited that hosts may be chosen by parasites as a function of their suitability, but the existing literature addressing that hypothesis is still very scarce. In a natural system involving a parasitic Philornis botfly and its multiple bird hosts, there are profound differences in host quality. The Great Kiskadee tolerates and does not invest in resisting the infection, which makes it an optimal host. Alternative hosts are frequently used, but whilst some of them may be good options, others are bad alternatives. Here we examined the host selection processes that drive parasite dynamics in this system with 8 years of data from a longitudinal study under natural conditions. We found that the use of an alternative host was not driven by its density or relative frequency, but instead selection of these hosts was strongly dependent on availability of more suitable hosts. When optimal hosts are plentiful, the parasite tends to ignore alternative ones. As broods of optimal hosts become limited, good alternative hosts are targeted. The parasite chooses bad alternative hosts only when better alternatives are not sufficiently available. These results add evidence from a natural system that some parasites choose their hosts as a function of their profitability, and show that host selection by this parasite is plastic and context-dependent. Such findings could have important implications for the epidemiology of some parasitic and vector-borne infections which should be considered when modelling and managing those diseases. The facultative host selection observed here can be of high relevance for public health, animal husbandry, and biodiversity conservation, because reductions in the richness of hosts might cause humans, domestic animals, or endangered species to become increasingly targeted by parasites that can drive the encounter of hosts.
Collapse
Affiliation(s)
- Darío Ezequiel Manzoli
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - María José Saravia-Pietropaolo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Sofía Irene Arce
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Alejandro Percara
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Leandro Raúl Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
| | - Pablo Martín Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina.
| |
Collapse
|
26
|
Foraging and feeding are independently regulated by social and personal hunger in the clonal raider ant. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02985-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Boratyński Z, Szyrmer M, Koteja P. The metabolic performance predicts home range size of bank voles: a support for the behavioral-bioenergetics theory. Oecologia 2020; 193:547-556. [PMID: 32638120 DOI: 10.1007/s00442-020-04704-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
The pace-of-life syndrome describes covariation between life-history, behavioral and physiological traits; while, the emerging behavioral-bioenergetics theory proposes mechanistic links between those traits in a spatial-ecological context. However, little is known about the association between the limits to metabolic rate and spatial performance (i.e., mobility, home range size) in free-living individuals. Here we show, for the first time at the intra-specific level, that mobility traits increased with the aerobic exercise capacity ([Formula: see text]O2max) in a wild rodent, the bank vole (Myodes glareolus): [Formula: see text]O2max affected directly the movement intensity, which in turn affected home ranges. The results show that evolution of high [Formula: see text]O2max could be driven by selection for spatial performance traits, and corroborate one of the key assumptions of the behavioral-bioenergetics theory. However, the minimum maintenance metabolism, measured as the basal metabolic rate (BMR), was not correlated with movement intensity, and the direction of the BMR-home range correlation tended to change with age of the voles. The latter result indicates that testing the theory will be particularly challenging.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland. .,CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal.
| | - Monika Szyrmer
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
28
|
Scharf I. Factors That Can Affect the Spatial Positioning of Large and Small Individuals in Clusters of Sit-and-Wait Predators. Am Nat 2020; 195:649-663. [PMID: 32216660 DOI: 10.1086/707392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Shadow competition, the interception of prey by sit-and-wait predators closest to the source of prey arrival, is prevalent in clusters of sit-and-wait predators. Peripheral positions in the cluster receive more prey and should thus be more frequently occupied. Models predicting spatial positioning in groups, however, usually ignore variability among group members. Here, I used a simulation model to determine conditions under which small and large sit-and-wait predators, which differ in their attack range, should differ in their spatial positions in the cluster. Small predators occupied peripheral positions more frequently than large predators at the simulation beginning, while the opposite held true as time advanced. Because of the large and small attack range of large and small predators, respectively, small predators mistakenly relocated away from peripheral positions, while large predators did not relocate fast enough from inferior central positions. Any factor that moderated the frequent relocations of small predators or had the opposite effect on large predators assisted small or large predators, respectively, in reaching the more profitable peripheral positions. Furthermore, any factor elevating shadow competition led to longer occupation of the periphery by large predators. This model may explain why sit-and-wait predators are not homogenously distributed in space according to size.
Collapse
|
29
|
Bernadou A, Hoffacker E, Pable J, Heinze J. Lipid content influences division of labour in a clonal ant. J Exp Biol 2020; 223:jeb219238. [PMID: 32107304 DOI: 10.1242/jeb.219238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Abstract
The fat body, a major metabolic hub in insects, is involved in many functions, e.g. energy storage, nutrient sensing and immune response. In social insects, fat appears to play an additional role in division of labour between egg layers and workers, which specialize in non-reproductive tasks inside and outside their nest. For instance, reproductives are more resistant to starvation, and changes in fat content have been associated with the transition from inside to outside work or reproductive activities. However, most studies have been correlative and we still need to unravel the causal interrelationships between fat content and division of both reproductive and non-reproductive labour. Clonal ants, e.g. Platythyrea punctata, are ideal models for studying task partitioning without confounding variation in genotype and morphology. In this study, we examined the range of variation and flexibility of fat content throughout the lifespan of workers, the threshold of corpulence associated with foraging or reproduction and whether low fat content is a cause rather than a consequence of the transition to foraging. We found that lipid stores change with division of labour from corpulent to lean and, in reverted nurses, back to corpulent. In addition, our data show the presence of fat content thresholds that trigger the onset of foraging or egg-laying behaviour. Our study supports the view that mechanisms that regulate reproduction and foraging in solitary insects, in particular the nutritional status of individuals, have been co-opted to regulate division of labour in colonies of social insects.
Collapse
Affiliation(s)
- Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elisabeth Hoffacker
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Pable
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Bega D, Samocha Y, Yitzhak N, Saar M, Subach A, Scharf I. Non-spatial information on the presence of food elevates search intensity in ant workers, leading to faster maze solving in a process parallel to spatial learning. PLoS One 2020; 15:e0229709. [PMID: 32109253 PMCID: PMC7048290 DOI: 10.1371/journal.pone.0229709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Experience can lead to faster exploitation of food patches through spatial learning or other parallel processes. Past studies have indicated that hungry animals either search more intensively for food or learn better how to detect it. However, fewer studies have examined the contribution of non-spatial information on the presence of food nearby to maze solving, as a parallel process to spatial learning. We exposed Cataglyphis niger ant workers to a food reward and then let them search for food in a maze. The information that food existed nearby, even without spatial information, led to faster maze solving compared to a control group that was not exposed to the food prior to the experiment. Faster solving is probably achieved by a higher number of workers entering the maze, following the information that food is present nearby. In a second experiment, we allowed the ants to make successive searches in the maze, followed by removing them after they had returned to the nest and interacted with their naïve nestmates. This procedure led to a maze-solving time in-between that displayed when removing the workers immediately after they had reached the food and preventing their return to the colony, and that of no removal. The workers that interacted upon returning to the nest might have transferred to naïve workers information, unrelated to spatial learning, that food existed nearby, and driven them to commence searching. Spatial learning, or an increase in the correct movements leading to the food reward relative to those leading to dead-ends, was only evident when the same workers were allowed to search again in the same maze. However, both non-spatial information on the presence of food that elevated search intensity and spatial learning led to faster maze solving.
Collapse
Affiliation(s)
- Darar Bega
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yehonatan Samocha
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Yitzhak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Maya Saar
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Łukowski A, Adamczyk D, Karolewski P. Survival and Recovery of the Pine-Tree Lappet Dendrolimus pini When Subjected to Simulated Starvation. INSECTS 2020; 11:insects11010067. [PMID: 31968638 PMCID: PMC7022933 DOI: 10.3390/insects11010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/29/2022]
Abstract
There are many reasons to study the survival and recovery of animals after starvation in simulated transport conditions or other passive dispersal methods. To do so, we chose Dendrolimus pini, an economically important pest of Scots pine with great potential in terms of passive dispersal outside its territory. In this work, we sought to answer the following questions: What is the maximum survival of different instar larvae after total starvation? Does access to dry tissues of the preferred host plant extend the lifespan of the larvae? Does the possibility of larvae recovery exist after starvation for various periods? We found that older larvae survived longer without food than younger larvae. Moreover, dry food did not extend the lifespan of the larvae. Our observations showed that insects were interested in food and tasted it at the beginning, but they did not feed on it for long. Furthermore, larvae recovery was indeed possible, and the time of starvation did not significantly affect this. We generally concluded that the D. pini larvae were characterized by the ability to survive without food for up to one month, which confirms that this species is able to survive long durations of transport to almost anywhere in the world.
Collapse
Affiliation(s)
- Adrian Łukowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
- Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
- Correspondence:
| | - Dawid Adamczyk
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
| | - Piotr Karolewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (D.A.); (P.K.)
| |
Collapse
|
32
|
Eitle MW, Carolan JC, Griesser M, Forneck A. The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp. PLoS One 2019; 14:e0225881. [PMID: 31846459 PMCID: PMC6917271 DOI: 10.1371/journal.pone.0225881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 01/17/2023] Open
Abstract
The successful parasitisation of a plant by a phytophagous insect is dependent on the delivery of effector molecules into the host. Sedentary gall forming insects, such as grape phylloxera (Daktulosphaira vitifoliae Fitch, Phylloxeridae), secrete multiple effectors into host plant tissues that alter or modulate the cellular and molecular environment to the benefit of the insect. The identification and characterisation of effector proteins will provide insight into the host-phylloxera interaction specifically the gall-induction processes and potential mechanisms of plant resistance. Using proteomic mass spectrometry and in-silico secretory prediction, 420 putative effectors were determined from the salivary glands or the root-feeding D. vitifoliae larvae reared on Teleki 5C (V. berlandieri x V. riparia). Among them, 170 conserved effectors were shared between D. vitifoliae and fourteen phytophagous insect species. Quantitative RT-PCR analysis of five conserved effector candidates (protein disulfide-isomerase, peroxidoredoxin, peroxidase and a carboxypeptidase) revealed that their gene expression decreased, when larvae were starved for 24 h, supporting their assignment as effector molecules. The D. vitifoliae effectors identified here represent a functionally diverse group, comprising both conserved and unique proteins that provide new insight into the D. vitifoliae-Vitis spp. interaction and the potential mechanisms by which D. vitifoliae establishes the feeding site, suppresses plant defences and modulates nutrient uptake.
Collapse
Affiliation(s)
- Markus W. Eitle
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Michaela Griesser
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria
| | - Astrid Forneck
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria
| |
Collapse
|
33
|
Segovia JMG, Moura RR, Willemart RH. Starvation decreases behavioral consistency in a Neotropical harvestman. Acta Ethol 2019. [DOI: 10.1007/s10211-019-00327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Guo JW, Li P, Zhang J, Liu XD, Zhai BP, Hu G. Cnaphalocrocis medinalis Moths Decide to Migrate when Suffering Nutrient Shortage on the First Day after Emergence. INSECTS 2019; 10:insects10100364. [PMID: 31635147 PMCID: PMC6835577 DOI: 10.3390/insects10100364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/23/2022]
Abstract
Migration is a costly strategy in terms of reproduction output. Competition for limited internal resources leads to physiological management of migration-reproduction trade-offs in energy allocation. Migratory insects must choose to determine to allocate energy into reproduction or migration when confronted insufficient energy supply. Although nutrient shortage is known to stimulate insect migration to escape deteriorating habitat, little is known about when and how migratory insects make decisions when confronted by a nutritional shortage. Here Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), a migratory rice pest in eastern Asia, was used to study the effects of starvation on reproductive traits, behavioral traits and energy allocation. The result showed that one or two days’ starvation before preoviposition did not significantly reduce the fertility (total egg per female laid) and flight capability (flight duration and distance) of both sexes C. medinalis. The preoviposition period was extended significantly only if moths were starved starting on the first day after emergence. Also, take-off percentage of moths starved since their first day increased significantly, and continued to increase even if supplemental nutrients were supplied as honey solution in later days. Moths starved on the first day appeared to allocate or transfer triglycerides into the thorax to maintain the migration process: the quantity of thoracic triglycerides did not differ with age, but abdominal triglycerides decreased with age if starvation continued. These results indicate that the first day post-emergence is a critical period for C. medinalis to decide to migrate or not in response to lack of food. This furthers our understanding of the population dynamics of migratory insects under natural conditions.
Collapse
Affiliation(s)
- Jia-Wen Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jie Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiang-Dong Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bao-Ping Zhai
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gao Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Chiara V, Ramon Portugal F, Jeanson R. Social intolerance is a consequence, not a cause, of dispersal in spiders. PLoS Biol 2019; 17:e3000319. [PMID: 31265448 PMCID: PMC6605646 DOI: 10.1371/journal.pbio.3000319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022] Open
Abstract
From invertebrates to vertebrates, a wealth of species display transient sociality during their life cycle. Investigating the causes of dispersal in temporary associations is important to better understand population dynamics. It is also essential to identify possible mechanisms involved in the evolutionary transition from transient to stable sociality, which has been documented repeatedly across taxa and typically requires the suppression of dispersal. In many animals, the onset of dispersal during ontogeny coincides with a sharp decline in social tolerance, but the causal relationship still remains poorly understood. Spiders offer relevant models to explore this question, because the adults of the vast majority of species (>48,000) are solitary and aggressive, but juveniles of most (if not all) species are gregarious and display amicable behaviors. We deployed a combination of behavioral, chemical, and modelling approaches in spiderlings of a solitary species to investigate the mechanisms controlling the developmental switch leading to the decline of social cohesion and the loss of tolerance. We show that maturation causes an increase in mobility that is sufficient to elicit dispersal without requiring any change in social behaviors. Our results further demonstrate that social isolation following dispersal triggers aggressiveness in altering the processing of conspecifics’ cues. We thus provide strong evidence that aggression is a consequence, not a cause, of dispersal in spiderlings. Overall, this study highlights the need of extended social interactions to preserve tolerance, which opens new perspectives for understanding the routes to permanent sociality. Behavioral experiments with the spider Agelena labyrinthica, coupled to computational modelling, show that an increase in mobility with age drives dispersal in gregarious spiderlings of a solitary species and that the subsequent social isolation triggers aggression.
Collapse
Affiliation(s)
- Violette Chiara
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Felipe Ramon Portugal
- Innovations thérapeutiques et résistances, Ecole Nationale Vétérinaire de Toulouse, INRA, Toulouse, France
| | - Raphael Jeanson
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Rosenheim JA, Booster NA, Culshaw-Maurer M, Mueller TG, Kuffel RL, Law YH, Goodell PB, Pierce T, Godfrey LD, Hunter WB, Sadeh A. Disease, contagious cannibalism, and associated population crash in an omnivorous bug, Geocoris pallens. Oecologia 2019; 190:69-83. [PMID: 31049659 DOI: 10.1007/s00442-019-04407-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
Disease and cannibalism are two strongly density-dependent processes that can suppress predator populations. Here we show that California populations of the omnivorous predatory bug Geocoris pallens are subject to infection by a pathogen, as yet unidentified, that elicits elevated expression of cannibalism. Laboratory experiments showed that the pathogen is moderately virulent, causing flattened abdomens, elevated nymphal mortality, delayed development, and reduced body size of adult females. Infection furthermore increases the expression of cannibalism. Field populations of Geocoris spp. declined strongly in association with sharp increases in the expression of egg cannibalism by adult G. pallens. Increased cannibalism was accompanied by a strongly bimodal distribution of cannibalism expression, with some females (putatively uninfected) expressing little cannibalism and others (putatively infected) consuming most or all of the eggs present. Highly cannibalistic females did not increase their consumption of Ephestia cautella moth eggs, suggesting that the high cannibalism phenotype reflected a specific loss of restraint against eating conspecifics. Highly cannibalistic females also often exhibited reduced egg laying, consistent with a virulent pathogen; less frequently, more cannibalistic females exhibited elevated egg laying, suggesting that cannibalism might also facilitate recycling of nutrients in eggs. Elevated cannibalism was not correlated with reduced prey availability or elevated field densities of G. pallens. Geocoris pallens population crashes appear to reflect the combined consequences of direct virulence-adverse pathogen effects on the infected host's physiology-and indirect virulence-mortality of both infected and uninfected individuals due to elevated cannibalism expression by infected individuals.
Collapse
Affiliation(s)
- Jay A Rosenheim
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA.
| | - Nicholas A Booster
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Michael Culshaw-Maurer
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Tobias G Mueller
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Randall L Kuffel
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Yao-Hua Law
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | | | - Treanna Pierce
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Larry D Godfrey
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Laboratory, USDA Agricultural Research Service, Fort Pierce, FL, 34945, USA
| | - Asaf Sadeh
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization (Volcani Center), Rishon LeTsion, 7505101, Israel.
| |
Collapse
|
38
|
Influence of starvation on walking behavior of Bagrada hilaris (Hemiptera: Pentatomidae). PLoS One 2019; 14:e0215446. [PMID: 30998722 PMCID: PMC6472788 DOI: 10.1371/journal.pone.0215446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae) is an invasive stink bug species that feeds on cruciferous plants and can cause substantial damage to crops. Little is known about the dispersal behavior of B. hilaris, but movement is important because of the way this pest moves from senescing weed hosts into crop fields. Perhaps, B. hilaris residing on declining weed hosts become starved, which alters their normal locomotor activity and initiates dispersal. We examined the influence of starvation on the locomotor behavior of multiple life stages of B. hilaris under laboratory and outdoor conditions. We starved nymph (2nd/3rd and 4th/5th instars) and adult (female and male) stages for 0, 24, and 48 h. We measured distance moved in the laboratory and then distance moved and turning ratio outdoors. In the laboratory, the younger nymphs moved shortest distances when starved for 24 h, whereas late-instar nymphs (4th-5th instars) and adult B. hilaris that were starved moved farther than non-starved individuals. In the outdoor setting, environmental conditions, specifically surface temperature were important in determining how starvation affected distance moved. Starved insects were more responsive (moved farther) for a given change in temperature than non-starved insects. At lower temperatures, B. hilaris tended to move farther when non-starved and at higher temperatures, moved longer distances when starved, at least for certain stages. Increased starvation also led to more directional movement. Our results indicate that starvation influences aspects of movement for B. hilaris and that these effects can be influenced by temperature.
Collapse
|
39
|
Reproductive adaptation in alate adult morphs of the English grain aphid Sitobion avenae under starvation stress. Sci Rep 2019; 9:2023. [PMID: 30765848 PMCID: PMC6375909 DOI: 10.1038/s41598-019-38589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/02/2019] [Indexed: 11/08/2022] Open
Abstract
Adapting their reproductive physiology is a tactic that insects use in responding to conditions of food unavailability. The present study examined the potential effects of starvation periods on the ovarian development and reproduction of alate adult morphs of Sitobion avenae (Fabricius). Morphs both continuously fed and starved aphids contained two telotrophic ovaries, each comprising five ovarioles. As time increase after emergence, the number of offspring produced by the fed aphids increased gradually, whereas the number of embryos in their ovaries decreased gradually. Both the number of mature embryos and the volume of embryos rapidly increased at 24 h after emergence, and then remained at an approximately constant level between 24 and 144 h. Compared to the fed aphids, starved aphids only produced a small number of nymphs, and there was no significant change in the total number of embryos between 24 and 144 h, whereas both the number of mature embryos and volume of embryos increased significantly. Irrespective of starvation period, highly significant relationships between life span and fecundity were found. Adult aphids starved for longer periods presented lower longevity and fecundity, but dead females contained more mature embryos than those starved for shorter periods. These results suggested that, under starvation stress, S. avenae tends to invest in the development of larger embryos at the expense of reducing lifespan and future fecundity. This adaptive reproductive strategy under starvation stress could be one of the factors contributing to the successful establishment of new colonies of alate migratory aphids.
Collapse
|
40
|
Meyer TB, Uetz GW. Complex male mate choice in the brush-legged wolf spider Schizocosa ocreata (Hentz). Behav Ecol 2018. [DOI: 10.1093/beheco/ary172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Timothy B Meyer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - George W Uetz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
41
|
Bles O, Deneubourg JL, Nicolis SC. Food dissemination in ants: robustness of the trophallactic network against resource quality. ACTA ACUST UNITED AC 2018; 221:jeb.192492. [PMID: 30355610 DOI: 10.1242/jeb.192492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022]
Abstract
Insect societies are often composed of many individuals, achieving collective decisions that depend on environmental and colonial characteristics. For example, ants are able to focus their foraging effort on the most rewarding food source. While this phenomenon is well known, the link between the food source quality and the intranidal food dissemination networks and its dynamics has been neglected. Here, we analysed the global dynamics of food dissemination in Camponotus cruentatus workers, after feeding on a low (0.1 mol l-1) or on a high (1 mol l-1) sucrose concentration food source. We also analysed the trophallaxis activity at the individual level and built the complete network of trophallaxis. The results reveal that the dynamics of food dissemination and the structure of the trophallaxis network are robust and independent of the food concentration. We discuss these results in the light of recent advances in the study of efficiency in food management in ants.
Collapse
Affiliation(s)
- Olivier Bles
- Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Jean-Louis Deneubourg
- Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Stamatios C Nicolis
- Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| |
Collapse
|
42
|
Campos-Candela A, Palmer M, Balle S, Álvarez A, Alós J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol Lett 2018; 22:213-232. [PMID: 30467933 DOI: 10.1111/ele.13187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Consistent between-individual differences in movement are widely recognised across taxa. In addition, foraging plasticity at the within-individual level suggests a behavioural dependency on the internal energy demand. Because behaviour co-varies with fast-slow life history (LH) strategies in an adaptive context, as theoretically predicted by the pace-of-life syndrome hypothesis, mass/energy fluxes should link behaviour and its plasticity with physiology at both between- and within-individual levels. However, a mechanistic framework driving these links in a fluctuating ecological context is lacking. Focusing on home range behaviour, we propose a novel behavioural-bioenergetics theoretical model to address such complexities at the individual level based on energy balance. We propose explicit mechanistic links between behaviour, physiology/metabolism and LH by merging two well-founded theories, the movement ecology paradigm and the dynamic energetic budget theory. Overall, our behavioural-bioenergetics model integrates the mechanisms explaining how (1) behavioural between- and within-individual variabilities connect with internal state variable dynamics, (2) physiology and behaviour are explicitly interconnected by mass/energy fluxes, and (3) different LHs may arise from both behavioural and physiological variabilities in a given ecological context. Our novel theoretical model reveals encouraging opportunities for empiricists and theoreticians to delve into the eco-evolutionary processes that favour or hinder the development of between-individual differences in behaviour and the evolution of personality-dependent movement syndromes.
Collapse
Affiliation(s)
- Andrea Campos-Candela
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.,Department of Marine Sciences and Applied Biology, University of Alicante, P. O. Box 99, 03080, Alicante, Spain
| | - Miquel Palmer
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Salvador Balle
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Alberto Álvarez
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Josep Alós
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.,Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
43
|
Sandhu P, Shura O, Murray R, Guy C. Worms make risky choices too: the effect of starvation on foraging in the common earthworm (Lumbricus terrestris). CAN J ZOOL 2018. [DOI: 10.1139/cjz-2018-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Species should avoid risks to protect accumulated fitness. However, when faced with starvation, organisms may accept risks to enhance future reproductive opportunities. We investigated the effect of starvation on risk-taking behaviour in the common earthworm (Lumbricus terrestris Linnaeus, 1758). Lumbricus terrestris are negatively phototactic annelids that feed on decaying plant matter at the soil surface. Feeding in high-light conditions is a potentially riskier choice, given the threats of visual predators and desiccation. We predicted that starvation in L. terrestris would increase risk-taking behaviour and decrease time taken (latency) to make choices. We manipulated the starvation level of L. terrestris individuals (nonstarved, half-starved, and fully starved) and presented them with a binary foraging choice. Lumbricus terrestris could choose either a low-food and dark condition (low-risk condition) or a high-food and light condition (high-risk condition). We found that starved individuals selected the high-risk condition more often than nonstarved individuals. Starved individuals also had a decreased latency to first choice. Risk-taking did not scale with level of starvation; there was no difference in foraging choice and latency between half- and fully starved individuals. Our results indicate that L. terrestris makes state-dependent foraging choices, providing insight into the importance of fundamental life-history trade-offs in this understudied species.
Collapse
Affiliation(s)
- P. Sandhu
- Biology Department, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - O. Shura
- Biology Department, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - R.L. Murray
- Biology Department, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, ON M5S 3B2, Canada
| | - C. Guy
- Biology Department, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
44
|
Kato N, Fujiyama N, Nagayama T. Enhancement of habituation during escape swimming in starved crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:999-1005. [DOI: 10.1007/s00359-018-1298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
|
45
|
Mir AH, Qamar A. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances. NEOTROPICAL ENTOMOLOGY 2018; 47:610-618. [PMID: 28956278 DOI: 10.1007/s13744-017-0559-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.
Collapse
Affiliation(s)
- A H Mir
- Section of Entomology, Dept of Zoology, Aligarh Muslim Univ, Aligarh, 202002, India.
| | - A Qamar
- Section of Entomology, Dept of Zoology, Aligarh Muslim Univ, Aligarh, 202002, India
| |
Collapse
|
46
|
Bonte D, Masier S, Mortier F. Eco-evolutionary feedbacks following changes in spatial connectedness. CURRENT OPINION IN INSECT SCIENCE 2018; 29:64-70. [PMID: 30551827 DOI: 10.1016/j.cois.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 05/28/2023]
Abstract
Humans are drastically changing the spatial configuration of habitats. The associated changes in habitat connectedness impose strong selection on dispersal, and dispersal related traits. Evolutionary responses do, however, strongly feedback on the metapopulation dynamics, by further constraining or improving connectivity and impacting local population and food web dynamics. Because these spatial eco-evolutionary interactions occur at contemporary time scales, unique evidence on its importance is especially emerging in the field of entomology as many insects have short generation times and a huge reproductive potential. We review the ecological feedbacks originating from the evolution of dispersal rate, dispersal syndromes and genetic diversity on metapopulation dynamics and range expansions. We thus close the eco-evolutionary loop for insect and arachnid spatial dynamics.
Collapse
Affiliation(s)
- Dries Bonte
- Ghent University, Dept. of Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | - Stefano Masier
- Ghent University, Dept. of Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Frederik Mortier
- Ghent University, Dept. of Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
47
|
Tholt G, Kis A, Medzihradszky A, Szita É, Tóth Z, Havelda Z, Samu F. Could vectors' fear of predators reduce the spread of plant diseases? Sci Rep 2018; 8:8705. [PMID: 29880845 PMCID: PMC5992157 DOI: 10.1038/s41598-018-27103-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/29/2018] [Indexed: 11/09/2022] Open
Abstract
Predators influence the behaviour of prey and by doing so they potentially reduce pathogen transmission by a vector. Arthropod predators have been shown to reduce the consumption of plant biomass by pest herbivores, but their cascading non-consumptive effect on vector insects' feeding behaviour and subsequent pathogen transmission has not been investigated experimentally before. Here we experimentally examined predator-mediated pathogen transmission mechanisms using the plant pathogen Wheat Dwarf Virus that is transmitted by the leafhopper, Psammotettix alienus. We applied in situ hybridization to localize which leaf tissues were infected with transmitted virus DNA in barley host plants, proving that virus occurrence is restricted to phloem tissues. In the presence of the spider predator, Tibellus oblongus, we recorded the within leaf feeding behaviour of the herbivore using electrical penetration graph. The leafhopper altered its feeding behaviour in response to predation risk. Phloem ingestion, the feeding phase when virus acquisition occurs, was delayed and was less frequent. The phase when pathogen inoculation takes place, via the secretion of virus infected vector saliva, was shorter when predator was present. Our study thus provides experimental evidence that predators can potentially limit the spread of plant pathogens solely through influencing the feeding behaviour of vector organisms.
Collapse
Affiliation(s)
- G Tholt
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary.,Department of Systematic Zoology and Ecology, Faculty of Science, Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, H-1117, Hungary
| | - A Kis
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - A Medzihradszky
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - É Szita
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Z Tóth
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Z Havelda
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - F Samu
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary.
| |
Collapse
|
48
|
Gilad T, Koren R, Moalem Y, Subach A, Scharf I. Effect of continuous and alternating episodes of starvation on behavior and reproduction in the red flour beetle. J Zool (1987) 2018. [DOI: 10.1111/jzo.12556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T. Gilad
- School of Zoology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - R. Koren
- School of Zoology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Y. Moalem
- School of Zoology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - A. Subach
- School of Zoology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - I. Scharf
- School of Zoology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
49
|
Wexler Y, Scharf I. Distinct effects of two separately applied stressors on behavior in the red flour beetle. Behav Processes 2017; 145:86-92. [DOI: 10.1016/j.beproc.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
|
50
|
Saar M, Gilad T, Kilon-Kallner T, Rosenfeld A, Subach A, Scharf I. The interplay between maze complexity, colony size, learning and memory in ants while solving a maze: A test at the colony level. PLoS One 2017; 12:e0183753. [PMID: 28837675 PMCID: PMC5570381 DOI: 10.1371/journal.pone.0183753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Central-place foragers need to explore their immediate habitat in order to reach food. We let colonies of the individually foraging desert ant Cataglyphis niger search for a food reward in a maze. We did so for three tests per day over two successive days and an additional test after a time interval of 4-20 days (seven tests in total). We examined whether the colonies reached the food reward faster, consumed more food and changed the number of workers searching over time, within and between days. Colonies' food-discovery time shortened within and between days, indicating that some workers learnt and became more efficient in moving through the maze. Such workers, however, also forgot and deteriorated in their food-discovery time, leveling off back to initial performance after about two weeks. We used mazes of increasing complexity levels, differing in the potential number of wrong turns. The number of workers searching increased with colony size. Food-discovery time also increased with colony size in complex mazes but not in simple ones, perhaps due to the more frequent interactions among workers in large colonies having to move through narrow routes. Finally, the motivation to solve the maze was probably not only the food reward, because food consumption did not change over time.
Collapse
Affiliation(s)
- Maya Saar
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Gilad
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Kilon-Kallner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adar Rosenfeld
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|