1
|
Muscosky L, Horowitz A. Distinguishing Doors and Floors on All Fours: Landmarks as Tools for Vertical Navigation Learning in Domestic Dogs ( Canis familiaris). Animals (Basel) 2024; 14:3316. [PMID: 39595368 PMCID: PMC11591085 DOI: 10.3390/ani14223316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Spatial navigation allows animals to understand their environment position and is crucial to survival. An animal's primary mode of spatial navigation (horizontal or vertical) is dependent on how they naturally move in space. Observations of the domestic dog (Canis familiaris) have shown that they, like other terrestrial animals, navigate poorly in vertical space. This deficit is visible in their use of multi-story buildings. To date, no research has been conducted to determine if dogs can learn how to navigate in an anthropogenic vertical environment with the help of a landmark. As such, we herein investigate the effect of the addition of a visual or olfactory landmark on dogs' ability to identify when they are on their home floor. Subject behaviors toward their home door and a contrasting floor door were compared before and after exposure to a landmark outside of their home door. While subjects initially showed no difference in latency to approach an apartment door on their home or a wrong floor, we found a significant difference in latency to approach the doors in the test trials for subjects who approached the doors in every trial. Other findings are equivocal, but this result is consistent with the hypothesis that dogs can learn to navigate in vertical space.
Collapse
Affiliation(s)
- Lila Muscosky
- Dog Cognition Lab, Department of Psychology, Barnard College, New York, NY 10027, USA
| | - Alexandra Horowitz
- Dog Cognition Lab, Department of Psychology, Barnard College, New York, NY 10027, USA
| |
Collapse
|
2
|
Sibeaux A, Newport C, Green JP, Karlsson C, Engelmann J, Burt de Perera T. Taking a shortcut: what mechanisms do fish use? Commun Biol 2024; 7:578. [PMID: 38755224 PMCID: PMC11099040 DOI: 10.1038/s42003-024-06179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Path integration is a powerful navigational mechanism whereby individuals continuously update their distance and angular vector of movement to calculate their position in relation to their departure location, allowing them to return along the most direct route even across unfamiliar terrain. While path integration has been investigated in several terrestrial animals, it has never been demonstrated in aquatic vertebrates, where movement occurs through volumetric space and sensory cues available for navigation are likely to differ substantially from those in terrestrial environments. By performing displacement experiments with Lamprologus ocellatus, we show evidence consistent with fish using path integration to navigate alongside other mechanisms (allothetic place cues and route recapitulation). These results indicate that the use of path integration is likely to be deeply rooted within the vertebrate phylogeny irrespective of the environment, and suggests that fish may possess a spatial encoding system that parallels that of mammals.
Collapse
Affiliation(s)
- Adelaide Sibeaux
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| | - Cait Newport
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Jonathan P Green
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Cecilia Karlsson
- Wolfson College, University of Cambridge, Cambridge, CB3 9BB, UK
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Universitätstrasse 25, Bielefeld, 33615, Germany
| | - Theresa Burt de Perera
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
3
|
Ginosar G, Karpas ED, Weitzner I, Ulanovsky N. Dissociating two aspects of human 3D spatial perception by studying fighter pilots. Sci Rep 2023; 13:11265. [PMID: 37438399 DOI: 10.1038/s41598-023-37759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Human perception of 3D space has been investigated extensively, but there are conflicting reports regarding its distortions. A possible solution to these discrepancies is that 3D perception is in fact comprised of two different processes-perception of traveled space, and perception of surrounding space. Here we tested these two aspects on the same subjects, for the first time. To differentiate these two aspects and investigate whether they emerge from different processes, we asked whether these two aspects are affected differently by the individual's experience of 3D locomotion. Using an immersive high-grade flight-simulator with realistic virtual-reality, we compared these two aspects of 3D perception in fighter pilots-individuals highly experienced in 3D locomotion-and in control subjects. We found that the two aspects of 3D perception were affected differently by 3D locomotion experience: the perception of 3D traveled space was plastic and experience-dependent, differing dramatically between pilots and controls, while the perception of surrounding space was rigid and unaffected by experience. This dissociation suggests that these two aspects of 3D spatial perception emerge from two distinct processes.
Collapse
Affiliation(s)
- Gily Ginosar
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ehud D Karpas
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Idan Weitzner
- Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
4
|
Ben-Shaul Y, Hagbi Z, Dorfman A, Zadicario P, Eilam D. Rodents Prefer Going Downhill All the Way (Gravitaxis) Instead of Taking an Uphill Task. BIOLOGY 2022; 11:biology11071090. [PMID: 36101468 PMCID: PMC9312516 DOI: 10.3390/biology11071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
We directly tested whether, when given the choice to ascend or descend, rodents would favor traveling downwards or upwards. The test incorporated different rodent species that dwell in different habitats and display different life and motor styles. Testing was performed in a three-dimensional Y-maze in which the basis was horizontal and, by rotating it, one arm of the maze could be pointing upwards at a certain angle and the other arm pointed downwards at the same angle. All the tested species displayed a general preference for descent, with rodents from complex habitats being less affected by inclination compared with rodents from flatlands. Unlike laboratory rats, wild species traveled greater distances along the lower compared to the upper maze arm. All the rodents initially tended to travel the entire length of the inclined maze arms, but such complete trips decreased with the increase in inclination. When introduced into the maze from top or bottom, flatland dwellers traveled mainly in the entry arm. Overall, when given the choice to ascend or descend, all the tested species displayed a preference to descend, perhaps as attraction to the ground, where they usually have their burrows.
Collapse
|
5
|
When humans can fly: Imprecise vertical encoding in human 3D spatial navigation. Behav Brain Res 2022; 426:113835. [DOI: 10.1016/j.bbr.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
|
6
|
The time, the path, its length and strenuousness in maze learning. PSIHOLOGIJA 2022. [DOI: 10.2298/psi210301005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Previous findings show that rats in a maze tend to choose the shortest path
to reach food. But it is not clear whether this choice is based on path
length solely, or some other factors. The aim of this experiment was to
investigate which factor dominates the behavior in a maze: path (longer and
shorter), time (longer and shorter), or effort (more or less strenuous). The
experiment involved 40 mice (4 groups), learning a maze with two paths. Each
group went through only one of the situations within which we kept one
factor constant on two paths while the remaining two factors were varied.
Only in the fourth situation all factors were equalized. The results show
that there is a statistically significant difference in the maze path
preference between four situations. Preference between the paths is such
that mice always choose paths requiring less effort.
Collapse
|
7
|
Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation. Anim Cogn 2020; 24:133-163. [PMID: 32959344 PMCID: PMC7829245 DOI: 10.1007/s10071-020-01432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
We investigated how access to the vertical dimension influences the natural exploratory and foraging behaviour of rats. Using high-accuracy three-dimensional tracking of position in two- and three-dimensional environments, we sought to determine (i) how rats navigated through the environments with respect to gravity, (ii) where rats chose to form their home bases in volumetric space, and (iii) how they navigated to and from these home bases. To evaluate how horizontal biases may affect these behaviours, we compared a 3D maze where animals preferred to move horizontally to a different 3D configuration where all axes were equally energetically costly to traverse. Additionally, we compared home base formation in two-dimensional arenas with and without walls to the three-dimensional climbing mazes. We report that many behaviours exhibited by rats in horizontal spaces naturally extend to fully volumetric ones, such as home base formation and foraging excursions. We also provide further evidence for the strong differentiation of the horizontal and vertical axes: rats showed a horizontal movement bias, they formed home bases mainly in the bottom layers of both mazes and they generally solved the vertical component of return trajectories before and faster than the horizontal component. We explain the bias towards horizontal movements in terms of energy conservation, while the locations of home bases are explained from an information gathering view as a method for correcting self-localisation.
Collapse
|
8
|
Casto P, Wiegmann DD, Coppola VJ, Nardi D, Hebets EA, Bingman VP. Vertical-surface navigation in the Neotropical whip spider Paraphrynus laevifrons (Arachnida: Amblypygi). Anim Cogn 2020; 23:1205-1213. [PMID: 32851552 DOI: 10.1007/s10071-020-01420-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick Casto
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Daniele Nardi
- Department of Psychological Science, Ball State University, Muncie, IN, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
9
|
Path integration in a three-dimensional world: the case of desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:379-387. [PMID: 32020292 PMCID: PMC7192874 DOI: 10.1007/s00359-020-01401-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/03/2022]
Abstract
Desert ants use path integration to return from foraging excursions on a shortcut way to their nests. Intriguingly, when walking over hills, the ants incorporate the ground distance, the paths’ projection to the horizontal plane, into their path integrator. This review discusses how Cataglyphis may solve this computational feat. To infer ground distance, ants must incorporate the inclination of path segments into the assessment of distance. Hair fields between various joints have been eliminated as likely sensors for slope measurement, without affecting slope detection; nor do postural adaptations or changes in gait provide the relevant information. Changes in the sky’s polarization pattern due to different head inclinations on slopes were ruled out as cues. Thus, the mechanisms by which ants may measure slopes still await clarification. Remarkably, the precision of slope measurement is roughly constant up to a 45° inclination, but breaks down at 60°. An encounter of sloped path segments during a foraging trip induces a general acceptance of slopes, however, slopes are not associated with specific values of the home vector. All current evidence suggests that Cataglyphis does not compute a vector in 3-D: path integration seems to operate exclusively in the horizontal plane.
Collapse
|