1
|
Gao K, van der Heide W, Muijderman D, Nichols S, Karwal C, Kuperus P, Groot AT. Ecological immunology: do sexual attraction and immunity trade-off through a desaturase? INSECT SCIENCE 2025; 32:290-300. [PMID: 38769890 PMCID: PMC11824886 DOI: 10.1111/1744-7917.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Given the limited availability of resources in nature, sexual attractiveness may trade off with immunocompetence, as the immunocompetence handicap hypothesis (ICHH) posits. In invertebrates, a direct link between trade-offs through hormonal/molecular effectors in sexual signals and immunity has not been found so far. Here, we assessed how variation in sexual signals affected parasite infection in two sex pheromone selected lines of the moth Chloridea virescens: an attractive line with a low ratio of 16:Ald/Z11-16:Ald and an unattractive line with a high ratio. When infecting these lines with an apicomplexan parasite, we found that the attractive Low line was significantly more susceptible to the parasite infection than the unattractive High line. Since the ratio difference between these two lines is determined by a delta-11-desturase, we hypothesized that this desaturase may have a dual role, i.e., in the quality of the sexual signal as well as an involvement in immune response, comparable to testosterone in vertebrates. However, when we used CRISPR/cas9 to knockout delta-11-desturase in the attractive Low line, we found that the pheromonal phenotype did change to that of the High line, but the infection susceptibility did not. Notably, when checking the genomic location of delta-11-desaturase in the C. virescens, we found that mucin is adjacent to delta-11-desaturase. When comparing the mucin sequences in both lines, we found four nonsynonymous SNPs in the coding sequence, as well as intronic variation between the two lines. These differences suggest that genetic hitchhiking may explain the variation in susceptibility to parasitic infection.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Wout van der Heide
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Neurobiology and BehaviorCornell UniversityIthacaNew YorkUSA
| | - Daphne Muijderman
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Sarah Nichols
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | | | - Peter Kuperus
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
2
|
Liao A, Cavigliasso F, Savary L, Kawecki TJ. Effects of an entomopathogenic fungus on the reproductive potential of Drosophila males. Ecol Evol 2024; 14:e11242. [PMID: 38590549 PMCID: PMC10999951 DOI: 10.1002/ece3.11242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
While mortality is often the primary focus of pathogen virulence, non-lethal consequences, particularly for male reproductive fitness, are less understood; however, they are essential for understanding how sexual selection contributes to promoting resistance. We investigated how the fungal pathogen Metarhizium brunneum affects mating ability, fertility, and seminal fluid protein (SFP) expression of male Drosophila melanogaster paired with highly receptive virgin females in non-competitive settings. Depending on sex and dose, there was a 3-6-day incubation period after infection, followed by an abrupt onset of mortality. Meanwhile, the immune response was strongly induced already 38 h after infection and continued to increase as infection progressed. Latency to mate somewhat increased during the incubation period compared to sham-treated males, but even on Day 5 post infection >90% of infected males mated within 2 h. During the incubation period, M. brunneum infection reduced male reproductive potential (the number of offspring sired without mate limitation) by 11%, with no clear increase over time. Approaching the end of the incubation period, infected males had lower ability to convert number of mating opportunities into number of offspring. After repeated mating, infected males had lower SFP expression than sham controls, more so in males that mated with few mates 24 h earlier. Overall, despite strong activation of the immune response, males' mating ability and fertility remained surprisingly little affected by the fungal infection, even shortly before the onset of mortality. This suggests that the selection for resistance acts mainly through mortality, and the scope for fertility selection to enhance resistance in non-competing settings is rather limited.
Collapse
Affiliation(s)
- Aijuan Liao
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
3
|
Groot AT, Blankers T, Halfwerk W, Burdfield Steel E. The Evolutionary Importance of Intraspecific Variation in Sexual Communication Across Sensory Modalities. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:21-40. [PMID: 37562048 DOI: 10.1146/annurev-ento-030223-111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The evolution of sexual communication is critically important in the diversity of arthropods, which are declining at a fast pace worldwide. Their environments are rapidly changing, with increasing chemical, acoustic, and light pollution. To predict how arthropod species will respond to changing climates, habitats, and communities, we need to understand how sexual communication systems can evolve. In the past decades, intraspecific variation in sexual signals and responses across different modalities has been identified, but never in a comparative way. In this review, we identify and compare the level and extent of intraspecific variation in sexual signals and responses across three different modalities, chemical, acoustic, and visual, focusing mostly on insects. By comparing causes and possible consequences of intraspecific variation in sexual communication among these modalities, we identify shared and unique patterns, as well as knowledge needed to predict the evolution of sexual communication systems in arthropods in a changing world.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment (A-LIFE), VU Amsterdam, Netherlands;
| | - Emily Burdfield Steel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| |
Collapse
|
4
|
Reichert MS, Bolek MG, McCullagh EA. Parasite effects on receivers in animal communication: Hidden impacts on behavior, ecology, and evolution. Proc Natl Acad Sci U S A 2023; 120:e2300186120. [PMID: 37459523 PMCID: PMC10372545 DOI: 10.1073/pnas.2300186120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Parasites exert a profound effect on biological processes. In animal communication, parasite effects on signalers are well-known drivers of the evolution of communication systems. Receiver behavior is also likely to be altered when they are parasitized or at risk of parasitism, but these effects have received much less attention. Here, we present a broad framework for understanding the consequences of parasitism on receivers for behavioral, ecological, and evolutionary processes. First, we outline the different kinds of effects parasites can have on receivers, including effects on signal processing from the many parasites that inhabit, occlude, or damage the sensory periphery and the central nervous system or that affect physiological processes that support these organs, and effects on receiver response strategies. We then demonstrate how understanding parasite effects on receivers could answer important questions about the mechanistic causes and functional consequences of variation in animal communication systems. Variation in parasitism levels is a likely source of among-individual differences in response to signals, which can affect receiver fitness and, through effects on signaler fitness, impact population levels of signal variability. The prevalence of parasitic effects on specific sensory organs may be an important selective force for the evolution of elaborate and multimodal signals. Finally, host-parasite coevolution across heterogeneous landscapes will generate geographic variation in communication systems, which could ultimately lead to evolutionary divergence. We discuss applications of experimental techniques to manipulate parasitism levels and point the way forward by calling for integrative research collaborations between parasitologists, neurobiologists, and behavioral and evolutionary ecologists.
Collapse
Affiliation(s)
- Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | - Matthew G. Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | | |
Collapse
|
5
|
Weiss K, Schneider JM. Female sex pheromone emission is affected by body condition, but not immune system function, in the orb‐web spider
Argiope bruennichi. Ethology 2022. [DOI: 10.1111/eth.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Horn CJ, Wasylenko JA, Luong LT. Scared of the dark? Phototaxis as behavioural immunity in a host-parasite system. Biol Lett 2022; 18:20210531. [PMID: 35078333 PMCID: PMC8790348 DOI: 10.1098/rsbl.2021.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Behavioural immunity describes suites of behaviours hosts use to minimize the risks of infection by parasites/pathogens. Research has focused primarily on the evasion and physical removal of infectious stages, as well as behavioural fever. However, other behaviours affect infection risk while carrying ecologically significant trade-offs. Phototaxis, in particular, has host fitness implications (e.g. altering feeding and thermoregulation) that also impact infection outcomes. In this study, we hypothesized that a fly host, Drosophila nigrospiracula, employs phototaxis as a form of behavioural immunity to reduce the risk of infection. First, we determined that the risk of infection is lower for flies exposed in the light relative to the dark using micro-arena experiments. Because Drosophila vary in ectoparasite resistance based on mating status we examined parasite-mediated phototaxis in mated and unmated females. We found that female flies spent more time in the light side of phototaxis chambers when mites were present than in the absence of mites. Mating marginally decreased female photophobia independently of mite exposure. Female flies moved to lighter, i.e. less infectious, environments when threatened with mites, suggesting phototaxis is a mechanism of behavioural immunity. We discuss how parasite-mediated phototaxis potentially trades-off with host nutrition and thermoregulation.
Collapse
Affiliation(s)
- Collin J. Horn
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Jacob A. Wasylenko
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Lien T. Luong
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| |
Collapse
|
7
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J Anim Ecol 2021; 91:101-111. [PMID: 34626485 DOI: 10.1111/1365-2656.13604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
The terminal investment hypothesis predicts that as an organism's prospects for survival decrease, through age or when exposed to a pathogenic infection, it will invest more in reproduction, which should trade-off against somatic maintenance (including immunity) and therefore future survival. Attempts to test this hypothesis have produced mixed results, which, in addition, mainly rely on the assessment of changes in reproductive effort and often overlooking its impact on somatic defences and survival. Alternatively, animals may restrain current reproduction to sustain somatic protection, increasing the chance of surviving for additional reproductive opportunities. We tested both of these hypotheses in females of the yellow mealworm beetle, Tenebrio molitor, an iteroparous insect with reproductive tactics similar to that of long-lived organisms. To achieve this, we mimicked pathogenic bacterial infections early or late in the life of breeding females by injecting them with a suspension of inactivated Bacillus cereus, a known natural pathogen of T. molitor, and measured female age-specific fecundity, survival, body mass and immunity. Inconsistent with a terminal investment, females given either an early or late-life immune challenge did not exhibit reduced survival or enhance their reproductive output. Female fecundity declined with age and was reduced by the early but not the late immune challenge. Both early and late-life fecundity correlated positively with life expectancy. Finally, young and old females exhibited similar antibacterial immune responses, suggesting that they both restrained reproduction to sustain immunity. Our results clearly demonstrate that age-specific reproduction of T. molitor females under pathogenic threat is inconsistent with a terminal investment. In contrast, our results instead suggest that females used a reproductive restraint strategy to sustain immunity and therefore subsequent reproductive opportunities. However, as infections were mimicked only, the fitness benefit of this reproductive restraint could not be shown.
Collapse
Affiliation(s)
- Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Camille Sabarly
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|