1
|
Nagy M, Naik H, Kano F, Carlson NV, Koblitz JC, Wikelski M, Couzin ID. SMART-BARN: Scalable multimodal arena for real-time tracking behavior of animals in large numbers. SCIENCE ADVANCES 2023; 9:eadf8068. [PMID: 37656798 PMCID: PMC10854427 DOI: 10.1126/sciadv.adf8068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels. Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously. This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices). The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis. The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.
Collapse
Affiliation(s)
- Máté Nagy
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- MTA-ELTE Lendület Collective Behavior Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Hemal Naik
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecology of Animal Societies, Max-Planck Institute of Animal Behavior, Konstanz, Germany
| | - Fumihiro Kano
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nora V. Carlson
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Zoology, Faculty of Science/Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jens C. Koblitz
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Iain D. Couzin
- Department of Collective Behavior, Max-Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Bose APH, Dabernig-Heinz J, Oberkofler J, Koch L, Grimm J, Sefc KM, Jordan A. Aggression and spatial positioning of kin and non-kin fish in social groups. Behav Ecol 2023; 34:673-681. [PMID: 37434638 PMCID: PMC10332448 DOI: 10.1093/beheco/arad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 07/13/2023] Open
Abstract
Group-living animals are faced with the challenge of sharing space and local resources amongst group members who may be either relatives or non-relatives. Individuals may reduce the inclusive fitness costs they incur from competing with relatives by either reducing their levels of aggression toward kin, or by maintaining physical separation between kin. In this field study, we used the group-living cichlid Neolamprologus multifasciatus to examine whether within-group aggression is reduced among group members that are kin, and whether kin occupy different regions of their group's territory to reduce kin competition over space and local resources. We determined the kinship relationships among cohabiting adults via microsatellite genotyping and then combined these with spatial and behavioral analyses of groups in the wild. We found that aggressive contests between group members declined in frequency with spatial separation between their shelters. Female kin did not engage in aggressive contests with one another, whereas non-kin females did, despite the fact these females lived at similar distances from one another on their groups' territories. Contests within male-male and male-female dyads did not clearly correlate with kinship. Non-kin male-male and male-female dyads lived at more variable distances from one another on their territories than their corresponding kin dyads. Together, our study indicates that contests among group members can be mediated by relatedness in a sex-dependent manner. We also suggest that spatial relationships can play an important role in determining the extent to which group members compete with one another.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 90183, Umeå, Sweden
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitätsstraße 10, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | | | - Jan Oberkofler
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitätsstraße 10, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Lukas Koch
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitätsstraße 10, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Jacqueline Grimm
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Kristina M Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Alex Jordan
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitätsstraße 10, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
3
|
Bose APH, Koch L, Dabernig-Heinz J, Grimm J, Sefc KM, Jordan A. Patterns of sex-biased dispersal are consistent with social and ecological constraints in a group-living cichlid fish. BMC Ecol Evol 2022; 22:21. [PMID: 35236283 PMCID: PMC8889715 DOI: 10.1186/s12862-022-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Sex-biased dispersal is a common and widespread phenomenon that can fundamentally shape the genetic structure of the social environments in which animals live. For animals that live in and move between social groups, sex-biased dispersal can result in an asymmetry in the degree of relatedness among cohabiting males and females, which can have strong implications for their social evolution. In this study, we measured the relatedness structure within and across groups of a wild population of Neolamprologus multifasciatus, a highly-social, shell-dwelling cichlid fish endemic to Lake Tanganyika, East Africa. In total, we genotyped 812 fish from 128 social groups at 20 microsatellite loci. Neolamprologus multifasciatus live at high densities, and also experience strong ecological constraints on free movement throughout their habitat. At the same time, they exhibit sex differences in the degree of reproductive competition within their groups and this makes them an excellent model system for studying the factors associated with sex-biased dispersal. RESULTS Social groups of N. multifasciatus consist of multiple males and females living together. We found that cohabiting females were unrelated to one another (Lynch-Ritland estimates of relatedness = 0.045 ± 0.15, average ± SD), while males shared much higher, albeit variable, levels of relatedness to other males in their groups (0.23 ± 0.27). We uncovered a pronounced decline in relatedness between males living in separate groups as the spatial separation between them increased, a pattern that was not evident in females. Female dispersal was also markedly constrained by the distribution and availability of nearby territories to which they could emigrate. CONCLUSIONS Our results indicate female-biased dispersal in N. multifasciatus. Our study also highlights how the spatial distribution of suitable dispersal destinations can influence the movement decisions of animals. We also emphasize how sex-biased dispersal can influence the relatedness structure of the social environment in which individuals interact and compete with one another.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Lukas Koch
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | - Alex Jordan
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Bose APH, Dabernig-Heinz J, Koch L, Grimm J, Lang S, Hegedűs B, Banda T, Makasa L, Jordan A, Sefc KM. Parentage analysis across age cohorts reveals sex differences in reproductive skew in a group-living cichlid fish, Neolamprologus multifasciatus. Mol Ecol 2022; 31:2418-2434. [PMID: 35170123 DOI: 10.1111/mec.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
Group-living animals are often faced with complex reproductive decisions, namely how to partition within-group reproduction, how to obtain extra-group reproduction, and how these two means of reproduction should be balanced. The solutions to these questions can be difficult to predict because ecological conditions can affect the scopes for within-group and extra-group reproduction in complex ways. For example, individuals that are restricted from moving freely around their habitats may have limited extra-group reproductive opportunities, but at the same time, groups may live in close proximities to one another, which could potentially have the opposite effect. The group-living cichlid fish, Neolamprologus multifasciatus, experiences such ecological conditions, and we conducted an intensive genetic parentage analysis to investigate how reproduction is distributed within and among groups for both males and females. We found that cohabiting males live in 'high-skew' societies, where dominant males monopolize the majority of within-group reproduction, while females live in 'low-skew' societies, where multiple females can produce offspring concurrently. Despite extremely short distances separating groups, we inferred only very low levels of extra-group reproduction suggesting that subordinate males have very limited reproductive opportunities. A strength of our parentage analysis lies in its inclusion of individuals that spanned a wide age range, from young fry to adults. We outline the logistical circumstances when very young offspring may not always be accessible to parentage researchers, and present strategies to overcome the challenges of inferring mating patterns from a wide age range of offspring.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Lukas Koch
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | - Taylor Banda
- Lake Tanganyika Research Unit, Department of Fisheries, Ministry of Fisheries and Livestock, Mpulungu, Zambia
| | - Lawrence Makasa
- Lake Tanganyika Research Unit, Department of Fisheries, Ministry of Fisheries and Livestock, Mpulungu, Zambia
| | - Alex Jordan
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|