1
|
Flores-Méndez LC, Gómez-Gil B, Guerrero A, Hernández C. Effects of Dietary Agavin on the Gut Microbiota of the Nile Tilapia (Oreochromis niloticus) Reared at High Densities. Curr Microbiol 2024; 81:386. [PMID: 39358608 DOI: 10.1007/s00284-024-03919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
High-density stress can lead to dysbiotic microbiota, affecting the organism's metabolic, and protective functions. Agavin is a fructan with prebiotic properties that regulate the gut microbiota by promoting the growth of beneficial bacteria. This study evaluated the effect of agavin on the gut microbiota using Next-Generation Sequencing (NGS) and its correlation with the growth parameters. Four groups of fish were fed different diets: a control diet (negative and positive control), without agavin supplementation, and two experimental diets supplemented with agavin at 20 g kg-1 and 40 g kg-1. Nile tilapias (1.04 g ± 0.01 g) were fed for 110 days. After 90 days of feeding, fish were subjected to high-density stress (63 kg m-3) for 20 days, except for the negative control. NGS detected 1579 different operational taxonomic units in the samples. In the correlation analysis of growth parameters, the families Vibrionaceae and Methyloligillaceae showed a positive correlation with fish growth parameters, these results may serve to know the relation of agavin and microbiota on the growth performance, as well as the metabolic activities of families in tilapia. Furthermore, high-density stress and agavin supplementation modify the gut microbiota in tilapia. At a low-density, supplementation with 20 g kg-1 agavin promoted the growth of the potentially beneficial families Sphingomonadaceae, Oxalobacteriaceae, and Chitinophagaceae; at high densities, reduced the abundance of pathogenic families (Vibrionaceae and Aeromonadaceae). These results suggest that, under stress conditions, agavin can stimulate the growth of potentially beneficial bacteria and reduce the growth of potentially pathogenic bacteria, suggesting its potential use as a prebiotic in aquaculture.
Collapse
Affiliation(s)
- Lizeth C Flores-Méndez
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico
| | - Abraham Guerrero
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | - Crisantema Hernández
- Centro de Investigación en Alimentación y Desarrollo A.C., Av. Sábalo Cerritos S/N., 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
2
|
Puri P, Sharma JG, Singh R. Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Anim Health Res Rev 2022; 23:113-135. [PMID: 36597760 DOI: 10.1017/s1466252321000165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nutrition demands in aquaculture can be realized through quality aquafeeds as compounded diets that contribute to the growth and health of aquaculture species. Functional additives in feed, notably probiotics, prebiotics, and their admixture synbiotics, have been recently recognized for their biotherapeutic role as immunostimulants capable of conferring disease resistance, stress tolerance, and gastrointestinal health; counteracting the negative effects of anti-nutrients, pathogenic prevalence, and antimicrobials in finfish aquaculture. Formulated diets based on probiotics, prebiotics, and as a supplemental combination for synbiotics can significantly influence fish gut microbiomes, establishing the modalities of microbial dynamics to maximize host-associated benefits. These microbial functional-feed supplements are acclaimed to be biocompatible, biodegradable, and safe for dietary consumption as well as the environment. In fed fish aquaculture, prebiotic appended probiotic diet 'synbiotic' has propounded larger attention for its additional health and nutritional benefits. Synbiotic, prebiotic, and probiotic usage as functional feeds for finfish aquaculture thus provides promising prospects. Developing trends in their intended application are reviewed here forth.
Collapse
Affiliation(s)
- Parul Puri
- Department of Biotechnology, Delhi Technological University, Delhi, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
3
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
4
|
Esmaeili M. Blood Performance: A New Formula for Fish Growth and Health. BIOLOGY 2021; 10:biology10121236. [PMID: 34943151 PMCID: PMC8698978 DOI: 10.3390/biology10121236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary The use of haematological and blood biochemistry parameters has proven to be effective and repeatable ways to monitor fish health. Testing these parameters is becoming more common in aquaculture studies. Further, it is widely accepted that fish with better health status are more likely to grow faster as less energy should be consumed for non-growth purposes. Here, a new formula (Blood Performance) is introduced, which contains five common haematological and blood biochemistry parameters: red blood cells, white blood cells, haemoglobin, haematocrit, and total protein. The idea behind this formula is that any single component of this formula cannot be reliable enough as a biomarker of fish health and growth. However, interestingly, Blood Performance can be much more reliable and accurate for monitoring fish health and growth. Abstract Monitoring fish health in a repeatable and accurate manner can contribute to the profitability and sustainability of aquaculture. Haematological and blood biochemistry parameters have been powerful tools and becoming increasingly common in aquaculture studies. Fish growth is closely related to its health status. A fish with a higher growth rate is more likely to be a healthy one. Any change in the physiological status of the fish, from pollution to nutritional stress, can cause changes in the blood parameters. Various aquaculture studies have measured the following components: red blood cells, white blood cells, haemoglobin, haematocrit, and total protein. However, because these parameters do not always follow the same trend across experimental fish, it is difficult to draw a firm conclusion about which parameter should be considered. Therefore, Blood Performance (BP) as a new formula is introduced, which is a more reliable indicator. This formula is simple and sums up the natural logarithm of the five above-mentioned parameters. More than 90 published peer-reviewed articles that measured these five parameters in the last six years confirmed the reliability and validity of this formula. Regardless of which supplements were added to the diets, the fish with a higher growth rate had higher BP as well. In addition, in 44 studies out of 53 articles, there was a significant positive correlation between specific growth rate and BP. Under different stressful situations, from pollution to thermal stress, the fish under stress had a lower BP than the control. Fish meal and fish oil replacement studies were further evidence for this formula and showed that adding excessive alternative proteins decreased growth along with BP. In conclusion, BP can be a reliable indicator of fish health and growth when it is compared between groups in the same experiment or farm. Although there was a positive correlation between specific growth rate and BP, comparing BP between experiments is not recommended. Standardising the haematological assays can improve the reliability and accuracy of BP across experiments.
Collapse
Affiliation(s)
- Moha Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, 15-21 Nubeena Cres, Taroona, TAS 7053, Australia
| |
Collapse
|
5
|
Study on growth enhancement and the protective effects of dietary prebiotic inulin on immunity responses of rainbow trout (Oncorhynchus mykiss) fry infected with Aeromonas hydrophila. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
The present study evaluated the effects of dietary inulin on growth performance, body composition, serum, biochemical, and mucus immune factors; as well as innate immune responses of rainbow trout fry challenged with Aeromonas hydrophila. Four diets were prepared using a commercially available fish feed as a basal diet and different levels of prebiotic inulin incorporation; 0 (control), 1, 2, and 3%; referred to as C, T1, T2, and T3, respectively. The findings of the 60-day feeding trial showed that inulin inclusion affected final weight, food conversion rate (FCR), and specific growth rate (SGR) compared to that of the control group (P < 0.05), in which the lowest FCR was observed in T3. Body composition analysis revealed that inulin significantly increased protein content and decreased lipid levels, especially in the T1 and T2 groups. The lowest ash level was noticed in T2 (P < 0.05). Blood total protein, albumin, globulin, cholesterol, and glucose were not affected by inulin supplementation (P > 0.05). Analysis of humoral immune responses showed that the inulin supplements significantly increased lysozyme and complement activities (P < 0.05), as well as higher red blood cell count (RBC) and hemoglobin (Hb) in fish, fed 2% inulin, while no significant differences were observed among other treatments (P > 0.05). The mucosal parameters; including lysozyme, alkaline phosphatase (excluding ACH50); protease activities; and total immunoglobulin (IgM) improved significantly (P < 0.05), particularly in the T2 group. The T2 group also demonstrated the highest survival rate among all groups. The present findings indicate that dietary administration of inulin promotes growth and biochemical parameters, as well as serum immunity and mucosal immune responses of rainbow trout, in which a 2% inclusion produced the best results.
Collapse
|
6
|
Yang G, Qiu H, Yu R, Xiong L, Yan Q, Wen C, Peng M. Dietary supplementation of β-glucan, inulin and emodin modulates antioxidant response and suppresses intestinal inflammation of grass carp (Ctenopharyngodon idellus). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Shang H, Zhao J, Dong X, Guo Y, Zhang H, Cheng J, Zhou H. Inulin improves the egg production performance and affects the cecum microbiota of laying hens. Int J Biol Macromol 2020; 155:1599-1609. [PMID: 31751722 DOI: 10.1016/j.ijbiomac.2019.11.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Egg production performance, egg quality, nutrient digestibility, and microbial composition as affected by dietary inulin supplementation were evaluated in laying hens. A total of 300 laying hens were divided into 5 groups and fed diets containing inulin at levels of 0 (control), 5, 10, 15 and 20 g/kg, respectively. The results showed that the 15 g/kg inulin supplementation level improved average egg weight by 2.54%, egg mass by 5.76%, and laying rate by 3.09%, and decreased the feed conversion ratio by 3.61% compared to those of the control during feeding weeks 1 to 8. Dietary inulin supplementation improved eggshell thickness, nutrient digestibility and cecum Bacteroidales_S24-7_ group abundance in the laying hens. In conclusion, dietary inulin supplementation, particularly at the level of 15 g/kg, improved the egg production performance and eggshell thickness of laying hens, mainly due to increased nutrient digestibility and selective modulations of the cecum microbial communities.
Collapse
Affiliation(s)
- Hongmei Shang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, Jilin, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, AR, USA
| | - Xiaoqing Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jianglong Cheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
8
|
Yang X, Xu M, Huang G, Zhang C, Pang Y, Cheng Y. Effect of dietary L-tryptophan on the survival, immune response and gut microbiota of the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1007-1017. [PMID: 30381266 DOI: 10.1016/j.fsi.2018.10.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the influence of L-tryptophan (L-trp) on the survival, immune response and gut microbiota of the Chinese mitten crab, Eriocheir sinensis (with an average weight of 16.58 ± 2.20 g). After 30 days of feeding with diets supplemented with L-trp at 0.36%, 0.47%, 0.73% and 1.05% (groups 1, 2, 3 and 4, respectively), the survival rate and bacterial challenge (Aeromonas hydrophila) were evaluated, the activities of antioxidant and phosphatase enzymes in the serum were assessed, and the gut microbiota were measured via high-throughput Illumina sequencing. The results showed that the supplementation of L-trp significantly improved the survival rate of crabs (P < 0.05). After feeding for 7 days, it was observed that a high L-trp diet significantly increase the survival rate relative to a basal diet after a 96-h post-challenge with A. hydrophila (P < 0.05). The activity of CAT and AKP in the serum were increased by the addition of L-trp. The activity of CAT and AKP in the serum in group 4 were higher than those in group 1 (P < 0.05). Furthermore, we observed that adjunction of the L-trp can significantly increase the richness and diversity of the gut microbiota. The dominant phylum in the intestine of the Chinese mitten crab were Tenericutes, Proteobacteria, Firmicutes, Chloroflexi and Actinobacteria. The L-trp in the diets increased the richness of Proteobacteria, Firmicutes and Actinobacteria in the intestine significantly. These bacteria were all dominant bacteria and had a specific role in promoting the immunity of E. sinensis. Therefore, it could be inferred that L-trp supplementation is beneficial in the diet of E. sinensis. Based in these results, the dietary 0.47% or 0.73%L-trp supplemented is found to be optimum to improve E. sinensis survival.
Collapse
Affiliation(s)
- Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Minjie Xu
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Genyong Huang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Cong Zhang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yangyang Pang
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Xu G, Xing W, Li T, Ma Z, Liu C, Jiang N, Luo L. Effects of dietary raffinose on growth, non-specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂). FISH & SHELLFISH IMMUNOLOGY 2018; 72:237-246. [PMID: 29104091 DOI: 10.1016/j.fsi.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
This study was performed to determine the efficacy of raffinose on the growth, non-specific immunity, intestinal morphology and microbiota of juvenile hybrid sturgeon, (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂). Hybrid sturgeons were divided into 2 groups and each group was fed with diets supplemented with or without raffinose for 56 days. Hybrid sturgeon fed diet supplemented with raffinose had significantly higher final body weight (FBW), specific growth rate (SGR), and weight gain ratio (WGR) than fish fed the control diet (P < 0.05). Raffinose in diet had no negative effect on feed intake (FI) and feed conversion ratio (FCR) (P > 0.05). Compared with the control diet, the myeloperoxidase (MPO) and respiratory burst (NBT) activitives were significantly higher in sturgeon fed the raffinose supplemented diet (P < 0.05). The increasing of intestinal villi area and mucosal folds were observed in intestinal tract of sturgeon when they fed the raffinose supplemented diet. Meanwhile, the residual bait of intestinal tract was relatively lower in sturgeon with raffinose treatment. High-throughput sequencing revealed that majority of reads derived from the sturgeon digesta were constituted by members of Proteobacteria, Firmicutes, Fusobacteria and Actinobacteria. Shannon's diversity index existed significant difference among dietary treatments indicating that the overall microbial community was modified to a large extent by dietary raffinose. In conclusion, supplementation of the diet with raffinose is capable of improving hybrid sturgeon growth performances and intestinal morphology, modifying the intestinal microbial composition.
Collapse
Affiliation(s)
- Guanling Xu
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Wei Xing
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Tieliang Li
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Zhihong Ma
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Caixia Liu
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing 100068, China
| | - Lin Luo
- Beijing Fisheries Research Institute, Beijing 100068, China.
| |
Collapse
|