1
|
Zheng C, Cone JW, van Peer A, Baars JJP, Hendriks WH. Conversion of Lignocellulosic Biomass Into Valuable Feed for Ruminants Using White Rot Fungi. J Anim Physiol Anim Nutr (Berl) 2025; 109:800-811. [PMID: 39797406 PMCID: PMC12091087 DOI: 10.1111/jpn.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes. CS grew faster than LE and PE on all types of biomass. LE did not grow on cocoa shells, while growth rate of CS and PE on cocoa shells was lower compared to other types of biomass. After this first screening, all types of biomass, excluding the cocoa shells, were colonised by the three fungal strains for 8 weeks. Treatment with CS and LE improved IVGP more than treatment with PE. Methane production was reduced in six combinations of biomass with CS, four with LE, and three with PE. Six types of biomass were selected for treatment with CS and four were selected for treatment with CS and LE, to determine the net improvement of nutritional value (increased IVGP corrected for dry matter loss) after 2, 4, 6, 7 and 8 weeks of treatment. The highest net improvement was found for CS and LE treated rapeseed straw (86% and 20%, respectively) and spent reed (80% and 43%, respectively). All treatments decreased dry matter, lignin and hemicellulose, the latter two both in absolute amount and content. In conclusion, net improvement of highly lignified biomasses by CS was greater than LE, with the nutritional value of rapeseed straw and spent reed being significantly improved by both fungi.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Animal ScienceWageningen University & ResearchWageningenThe Netherlands
| | - John W. Cone
- Department of Animal ScienceWageningen University & ResearchWageningenThe Netherlands
| | - Arend van Peer
- Department of Plant ScienceWageningen University & ResearchWageningenThe Netherlands
| | - Johan J. P. Baars
- Department of Plant ScienceWageningen University & ResearchWageningenThe Netherlands
| | - Wouter H. Hendriks
- Department of Animal ScienceWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
2
|
Sufyan A, Khan NA, AbuGhazaleh A, Ahmad N, Tang S, Tan Z. Novel techniques for the mass production of nutritionally improved, fungus-treated lignocellulosic biomass for ruminant nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2215-2224. [PMID: 37938140 DOI: 10.1002/jsfa.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Laboratory-scale experiments have shown that treatment with selective lignin-degrading white-rot fungi improves the nutritional value and ruminal degradability of lignocellulosic biomass (LCB). However, the lack of effective field-applicable pasteurization methods has long been recognized as a major obstacle for scaling up the technique for fungal treatment of large quantities of LCB for animal feeding. In this study, wheat straw (an LCB substrate) was subjected to four field-applicable pasteurization methods - hot-water, formaldehyde fumigation, steam, and hydrated lime - and cultured with Pleurotus ostreatus grain spawn for 10, 20, and 30 days under solid-state fermentation. Samples of untreated, pasteurized but non-inoculated and fungus-treated straws were analyzed for chemical composition, aflatoxin B1 (AFB1 ), and in vitro dry matter digestibility (IVDMD), in vitro total gas (IVGP), methane (CH4 ), and volatile fatty acid (VFA) production. RESULTS During the 30-day fungal treatment, steam and lime pasteurized straws had the greatest loss of lignin, resulting in marked improvements in crude protein (CP), IVDMD, IVGP, and total VFAs. Irrespective of the pasteurization method, the increase in IVDMD during fungal treatment was linearly (R2 = 0.77-0.92) related to lignin-loss in the substrate during fungal treatment. The CH4 production of the fungus-treated straw was not affected by the pasteurization methods. Aflatoxin B1 was within the safe level (<5 μg kg-1 ) in all pasteurized, fungus treated straws. CONCLUSION Steam and lime were promising field-applicable pasteurization techniques to produce nutritionally improved fungus-treated wheat straw to feed ruminants. Lime pasteurization was more economical and did not require expensive energy inputs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abubakar Sufyan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
- Department of Animal Science, Southern Illinois University, Carbondale, IL, USA
| | - Nazir Ahmad Khan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Amer AbuGhazaleh
- Department of Animal Science, Southern Illinois University, Carbondale, IL, USA
| | - Nazir Ahmad
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Shaoxun Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
3
|
Olagunju LK, Isikhuemhen OS, Dele PA, Anike FN, Ike KA, Shaw Y, Brice RM, Orimaye OE, Wuaku M, Essick BG, Holt N, Udombang NS, Enemudo JO, Subedi K, Anele UY. Effects of the Incubation Period of Pleurotus ostreatus on the Chemical Composition and Nutrient Availability of Solid-State-Fermented Corn Stover. Animals (Basel) 2023; 13:2587. [PMID: 37627378 PMCID: PMC10451637 DOI: 10.3390/ani13162587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The current study aimed to optimize and improve the feeding value of Pleurotus ostreatus-fermented corn stover by evaluating the effects of five solid-state fermentation times and three in vitro fermentation periods on the chemical composition, dry matter disappearance (DMD), microbial mass and volatile fatty acid (VFA) production of treated and untreated corn stover. The study utilized a 3 × 5 factorial design, with eight replicates per treatment. Dry matter, crude protein (CP), ash and non-fiber carbohydrate (NFC) contents increased quadratically (p < 0.05) with increases in the solid-state fermentation time. Increases of 44.4-59.1%, 20.6-78.6% and 40.5-121% were noted for the CP, ash and NFC contents, respectively. Organic matter, ether extract, neutral detergent fiber and hemicellulose contents decreased quadratically (p < 0.05) across the treatments. Similar trends were noted for DM and fiber disappearance in the treatments. The total gas production and in vitro true dry matter digestibility (IVTDMD) increased quadratically, while microbial mass and in vitro apparent DMD increased in a linear manner. The total VFA, propionate and butyrate contents increased linearly. Both the acetate content and the A:P ratio decreased in a linear manner. The results show that the rumen fermentation pathway favors the production of propionate, with increases in propionate production of 7.46 and 8.30% after 2 and 4 wk, respectively. The study showed that a 2 wk period of solid-state fermentation is sufficient to provide a bio-transformed cow-calf feed resource from P. ostreatus-treated corn stover.
Collapse
Affiliation(s)
- Lydia K. Olagunju
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (F.N.A.); (B.G.E.); (N.H.); (N.S.U.); (J.O.E.)
| | - Peter A. Dele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Felicia N. Anike
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (F.N.A.); (B.G.E.); (N.H.); (N.S.U.); (J.O.E.)
| | - Kelechi A. Ike
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Yasmine Shaw
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Rosetta M. Brice
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Oluteru E. Orimaye
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Michael Wuaku
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| | - Brandon G. Essick
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (F.N.A.); (B.G.E.); (N.H.); (N.S.U.); (J.O.E.)
| | - Nathan Holt
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (F.N.A.); (B.G.E.); (N.H.); (N.S.U.); (J.O.E.)
| | - Nkese S. Udombang
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (F.N.A.); (B.G.E.); (N.H.); (N.S.U.); (J.O.E.)
| | - Judith O. Enemudo
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (F.N.A.); (B.G.E.); (N.H.); (N.S.U.); (J.O.E.)
| | - Kiran Subedi
- Analytical Services Laboratory, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (L.K.O.); (P.A.D.); (K.A.I.); (Y.S.); (R.M.B.); (O.E.O.); (M.W.)
| |
Collapse
|
4
|
Effects of Solid-State Fermentation Pretreatment with Single or Dual Culture White Rot Fungi on White Tea Residue Nutrients and In Vitro Rumen Fermentation Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermentation of agricultural by-products by white rot fungi is a research hotspot in the development of ruminant feed resources. The aim of this study was to investigate the potential of the nutritional value and rumen fermentation properties of white tea residue fermented at different times, using single and dual culture white rot fungal species. Phanerochaete chrysosporium, Pleurotus ostreatus, and Phanerochaete chrysosporium + Pleurotus ostreatus (dual culture) solid-state fermented white tea residue was used for 4 weeks, respectively. The crude protein content increased significantly in all treatment groups after 4 weeks. Total extractable tannin content was significantly decreased in all treatment groups (p < 0.01). P. chrysosporium and dual culture significantly reduced lignin content at 1 week. The content of NH3-N increased in each treatment group (p < 0.05). P. chrysosporium treatment can reduce the ratio of acetic to propionic and improve digestibility. Solid state fermentation of white tea residue for 1 week using P. chrysosporium was the most desirable.
Collapse
|
5
|
Nutraceutical Enrichment of Animal Feed by Filamentous Fungi Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need for improvements in animal production, particularly for ruminants, such that more sustainable and efficient processes are developed for obtaining more nutritious and efficient feeds. Filamentous fungi can add value to residual plant biomass, and may also have the potential to produce metabolites and enrich plant biomasses used in animal nutrition, converting them into nutraceutical sources. Thus, in this work, filamentous fungal fermentation of ruminant feed biomasses commonly used in Brazil was performed, and the enrichment for bioactive metabolites was tested. For this, Fistulina hepatica, Ganoderma lucidum, Pleurotus pulmonarius, Panus lecomtei, and Aspergillus terreus were grown for 28 days on different substrates: starchy grains- (sorghum, oat, and corn), fibrous substrates (coast-cross, rice husk, and moringa plant) and protein-rich substrates (cottonseed cake and pigeon pea plant). Fermented substrates were evaluated for laccase activity, crude protein, β-glucan, and lovastatin content. The highest growth rate was observed for G. lucidum in oat substrate (OT-01) (0.708 ± 0.035 cm/day) and F. hepatica in oat + coast-cross + pigeon pea treatment (OT-10) (0.607 ± 0.012 cm/day). High laccase activity was observed for P. lecomtei grown in starchy grain + moringa + pigeon pea substrate, reaching an activity of 416.8 ± 20.28 U/g. A. terreus growth in ST-09 (sorghum + pigeon pea) showed higher protein (15.3 ± 0.46%), β-glucan (503.56 ± 8.6 mg/g) and lovastatin (1.10 ± 0.17 mg/g) content compared to untreated substrates. These results demonstrate that filamentous fungi are an alternative for nutraceutical enrichment of ruminant feed biomasses. To the best of our knowledge, this is the first report in which P. lecomtei and F. hepatica are evaluated for their ability to be cultivated in ruminant feed substrates from Brazil.
Collapse
|
6
|
Bioactives and Extracellular Enzymes Obtained from Fermented Macrofungi Cultivated in Cotton and Jatropha Seed Cakes. Microorganisms 2022; 10:microorganisms10081670. [PMID: 36014089 PMCID: PMC9413263 DOI: 10.3390/microorganisms10081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
This work focused on obtaining fermented oil cake (cotton or Jatropha) via macrofungi growth with potential characteristics for animal feed formulations, such as the presence of extracellular enzymes, bioactive (ergosterol and antioxidants), and detoxification of antinutritional compounds. The concentration of phorbol esters was reduced by four macrofungi in Jatropha seed cake (JSC) to non-toxic levels. At least two macrofungi efficiently degraded free gossypol in cottonseed cake (CSC). Fermentation with Coriolopsis sp. INPA1646 and Tyromyces sp. INPA1696 resulted in increased ergosterol concentrations, antioxidant activity reduction, and high activity of laccases and proteases. Bromatological analysis indicated high crude protein concentrations, with partial solubilization by fungal proteases. Fermented products from Coriolopsis sp. and Tyromyces sp. in JSC or CSC can be considered important biological inputs for monogastric and polygastric animal feed.
Collapse
|
7
|
Treatment of Rice Stubble with Pleurotus ostreatus and Urea Improves the Growth Performance in Slow-Growing Goats. Animals (Basel) 2021; 11:ani11041053. [PMID: 33917899 PMCID: PMC8068234 DOI: 10.3390/ani11041053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Fungi treatment is well established as a promising approach to upgrade the nutritional value of lignocellulosic biomass. This potency of fungi treatment is, however, primarily based on in vitro experiments, and extrapolation to practice is currently hindered, owing to a dearth of studies addressing the practical relevance of fungal treatment of high-fiber feed, such as rice straw and rice stubble. These potential biomasses are rife in Southeast Asian countries, coinciding with increasing rice production; however, it remains a big challenge to utilize rice stubble as a potential feed for ruminants. Similar to rice straw, rice stubble is traditionally eliminated through controlled burning, which is harmful to the environment. The aim of this study was to convert rice stubble into a new animal feed capable of increasing environmental friendliness. Using urea, it is well known to modify the lignification or silicification of lignocellulosic biomass. However, it remains scanty in combination with fungi treatment. Therefore, we treated rice stubble with either urea or oyster fungus (Pleurotus ostreatus) or a combination of these two treatments and offered these treated rice stubbles to slow-growing goats with the objective to study their effect on feed intake, digestibility, and fermentation end-products. Abstract The objective of this study was to evaluate the efficacy of the fungal treatment (Pleurotus ostreatus) of urea-treated rice stubble on growth performance in slow-growing goats. Eighteen crossbred Thai-native x Anglo-Nubian male goats (average body weight: 20.4 ± 2.0 kg) were randomly assigned to three experimental total mixed rations containing 35% rice stubble (RS) that were either untreated (URS), urea treated (UTRS), or treated with urea and fungi (UFTRS). URS and UTRS were cultivated and harvested from an aseptically fungal spawn, incubated at 25–30 °C for 25 days. Indicators of growth performance were monitored, and feces were collected quantitatively to assess nutrient digestibility, during a 12-week feeding trial. All goats remained healthy throughout the experiment. The goats fed UFTRS had a lower feed conversion ratio (kg feed/kg growth) compared to goats fed URS or UTRS. Compared to URS, dietary UFTRS increased the nutrient digestibility of slow-growing goats, such as organic matter (OM) (+8.5%), crude protein (CP) (+5.5%), neutral detergent fiber (NDF) (+39.2%), and acid detergent fiber (ADF) (+27.4%). Likewise, dietary UFTRS tended to increase rumen ammonia concentrations, but rumen pH and volatile fatty acids were not affected by UFTRS. In conclusion, the present study indicates that the fungal treatment of RS is an effective tool to improve the growth performance of slow-growing goats.
Collapse
|
8
|
Nayan N, Sonnenberg AS, Hendriks WH, Cone JW. Prospects and feasibility of fungal pretreatment of agricultural biomass for ruminant feeding. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Arredondo-Santoyo M, Herrera-Camacho J, Vázquez-Garcidueñas MS, Vázquez-Marrufo G. Corn stover induces extracellular laccase activity in Didymosphaeria sp. (syn. = Paraconiothyrium sp.) and exhibits increased in vitro ruminal digestibility when treated with this fungal species. Folia Microbiol (Praha) 2020; 65:849-861. [DOI: 10.1007/s12223-020-00795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
|
10
|
Stoffel F, Santana WDO, Gregolon JGN, Kist TBL, Fontana RC, Camassola M. Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Chemical features and bioactivity of grain flours colonized by macrofungi as a strategy for nutritional enrichment. Food Chem 2019; 297:124988. [DOI: 10.1016/j.foodchem.2019.124988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
|
12
|
Costa ACD, Cavalheiro GF, Vieira ERDQ, Gandra JR, Goes RHDTEBD, Paz MFD, Fonseca GG, Leite RSR. Catalytic properties of xylanases produced by Trichoderma piluliferum and Trichoderma viride and their application as additives in bovine feeding. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|