1
|
Jothyswarupha KA, Venkataraman S, Rajendran DS, Shri SSS, Sivaprakasam S, Yamini T, Karthik P, Kumar VV. Immobilized enzymes: exploring its potential in food industry applications. Food Sci Biotechnol 2025; 34:1533-1555. [PMID: 40129709 PMCID: PMC11929668 DOI: 10.1007/s10068-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 03/26/2025] Open
Abstract
The global demand for nutritious, longer-lasting food has spurred the food industry to seek eco-friendly solutions. Enzymes play a vital role in enhancing food quality by improving flavor, texture, and nutritional content. However, challenges like rapid deactivation and non-recoverability of free enzymes are addressed by immobilized enzymes, which enhance efficiency, quality, and sustainability in food processing. Immobilization methods include adsorption, covalent binding, entrapment, encapsulation and cross-liked enzyme aggregates, which enhancing their stability, reusability, and catalytic efficiency. Immobilization of enzyme such as pectinase, amylase, naringinase, cellulase, lactase, glucoamylase, xylanase, invertase, lipase, phytase, and protease have been utilized in fruit, vegetable, baking, dairy, brewing, and feed process due to their high thermostability, improved shelf life, food quality and safety. The catalytic efficiency of immobilized enzymes in detecting and quantifying various food components, contaminants, and quality indicators, also developed functional foods with nutraceuticals benefits, include prebiotic juices, lactose-free dairy products, poly unsaturated fatty acids rich foods, low-calorie sweeteners, fortified food and bioactive peptides. Graphical abstract
Collapse
Affiliation(s)
- K. A. Jothyswarupha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - S. S. Sakthi Shri
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Shivani Sivaprakasam
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Tholeti Yamini
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - P. Karthik
- Centre for Food Nanotechnology (CFN), Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Dashtestani F, Ma'mani L, Jokar F, Maleki M, Eskandari Fard M, Hosseini Salekdeh G. Zeolite-based nanocomposite as a smart pH-sensitive nanovehicle for release of xylanase as poultry feed supplement. Sci Rep 2021; 11:21386. [PMID: 34725388 PMCID: PMC8560943 DOI: 10.1038/s41598-021-00688-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Xylanase improves poultry nutrition by degrading xylan in the cell walls of feed grains and release the entrapped nutrients. However, the application of xylanase as a feed supplement is restricted to its low stability in the environment and gastrointestinal (GI) tract of poultry. To overcome these obstacles, Zeozyme NPs as a smart pH-responsive nanosystem was designed based on xylanase immobilization on zeolitic nanoporous as the major cornerstone that was modified with L-lysine. The immobilized xylanase was followed by encapsulating with a cross-linked CMC-based polymer. Zeozyme NPs was structurally characterized using TEM, SEM, AFM, DLS, TGA and nitrogen adsorption/desorption isotherms at liquid nitrogen temperature. The stability of Zeozyme NPs was evaluated at different temperatures, pH, and in the presence of proteases. Additionally, the release pattern of xylanase was investigated at a digestion model mimicking the GI tract. Xylanase was released selectively at the duodenum and ileum (pH 6-7.1) and remarkably preserved at pH ≤ 6 including proventriculus, gizzard, and crop (pH 1.6-5). The results confirmed that the zeolite equipped with the CMC matrix could enhance the xylanase thermal and pH stability and preserve its activity in the presence of proteases. Moreover, Zeozyme NPs exhibited a smart pH-dependent release of xylanase in an in vitro simulated GI tract.
Collapse
Affiliation(s)
- Fariba Dashtestani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Farzaneh Jokar
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Eskandari Fard
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | |
Collapse
|
3
|
Wang H, Yang P, Li L, Zhang N, Ma Y, Xu X. Effects of Sources and Forms of Vitamin K 3 on Its Storage Stability in Vitamin Premixes or Vitamin Trace Mineral Premixes. Animals (Basel) 2021; 11:ani11041140. [PMID: 33923615 PMCID: PMC8072531 DOI: 10.3390/ani11041140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Six types of vitamin K3 (VK3); two sources (menadione sodium bisulfite, MSB; menadione nicotinamide bisulfite, MNB), and three different forms (crystal, micro-capsule, and micro-sphere) were used to determine the retention of VK3 in vitamin premixes (Experiment 1) or vitamin trace mineral (VTM) premixes (Experiment 2) after 1, 2, 3, and 6 months of storage. The retention of VK3 in vitamin premixes was evaluated at 25 °C/60% relative humidity or 40 °C/75% relative humidity in an incubator in Experiment 1 and in VTM premixes (choline chloride: 0 vs. 16,000 mg/kg) stored at room temperature in Experiment 2. The VK3 retention in vitamin premix or VTM premix decreased significantly with the extension of storage time (p < 0.05). In Experiment 1, the VK3 retention was higher in the 25 °C/60% incubator (56%) than in the 40 °C/75% incubator (28%). The MNB retention (52%) was higher than MSB retention (32%). The retention of VK3 in micro-capsules (43%) or micro-spheres (48%) was higher than the crystal form (35%) after six months of storage. In Experiment 2, there was no difference between the retention of MSB (49%) or MNB (47%). The retention of VK3 of micro-capsule (51%) or micro-sphere (54%) was higher than that of crystal form (40%). The VK3 retention was higher in the choline-free group (51%) than in the choline group (47%) after six months of storage. Finally, the predicted equations of VK3 retention with storage time in vitamin premixes or VTM premixes were established. The R2 of the prediction equations was ≥0.9005, indicating that time is an important factor in predicting VK3 retention. In conclusion, the higher temperature-relative humidity, choline had negative effects on VK3 retention during premix storage. MNB retention was higher than MSB during storage of vitamin premix. The encapsulated forms of VK3, micro-capsules and micro-spheres, could improve VK3 storage stability in vitamin premix and VTM premix.
Collapse
Affiliation(s)
| | | | | | | | - Yongxi Ma
- Correspondence: ; Tel.: +86-10-6273-3588
| | | |
Collapse
|