1
|
Liu F, Liang L, Luo Z, Zhang G, Zuo F, Wang L. Effects of taurine on metabolomics of bovine mammary epithelial cells under high temperature conditions. Front Vet Sci 2024; 11:1393276. [PMID: 38915889 PMCID: PMC11194699 DOI: 10.3389/fvets.2024.1393276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
High temperature induces heat stress, adversely affecting the growth and lactation performance of cows. Research has shown the protective effect of taurine against hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect of taurine on the metabolomics of mammary epithelial cells of dairy cows under high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L (HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph Mass Spectrometer (LC-MS). Compared with the HS group, 2,873 and 3,243 metabolites were detected in the HT-8 group in positive and negative ion modes. Among these, 108 and 97 metabolites were significantly upregulated in positive and negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 15 different metabolites such as palmitic acid, adenine and hypoxanthine were screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 metabolites were, respectively, detected in the HT-32 group in the positive and negative ion modes. Among those metabolites, 206 metabolites were significantly up-regulated, while 206 metabolites were significantly downregulated in the positive mode. On the other hand, 497 metabolites were significantly upregulated in the negative mode, while 517 metabolites were reported to be downregulated. Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-32 group. KEGG enrichment analysis showed that these metabolites were mainly involved in lipid metabolism, purine metabolism and other biological processes. Overall, our study indicates that taurine supplementation alters the metabolites primarily associated with purine metabolism, lipid metabolism and other pathways to alleviate heat stress in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Feifei Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Liang Liang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| |
Collapse
|
2
|
Wang J, Yu Y, Guo Y, Guo Y, Liang X. Metabolomics-based study of the effect of dietary N-carbamoylglutamic acid addition to heifers in late pregnancy on newborn calves. Front Vet Sci 2024; 11:1335897. [PMID: 38410738 PMCID: PMC10894953 DOI: 10.3389/fvets.2024.1335897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
It has been demonstrated that supplementing late-gestation cow diets with NCG (N-carbamoylglutamic acid) increases the serum protein level, boosts immunological function, and increases the birth weight of the calves. However, the underlying mechanism remains unclear. In this experiment, 30 late-gestation Angus heifers almost at same conditions were chosen for this experiment. They were randomly divided into two groups of 15 cows each. A basal diet was provided to the control group, and 30 g/(d-head) of NCG was added to the basal diet of the test group (NCG group). Blood samples were collected from the jugular vein after birth and before the end (when the calves were 90 days old) of the experiment for plasma metabolomics analysis. The metabolomics analysis identified 53 metabolites between the NCG group and control group, with 40 significantly up-regulated and 13 significantly down-regulated. Among them, 33 lipids and lipid-like molecules made up 57.89% of all the metabolites that were found. Thirty-three metabolic pathways enriched by metabolites showed p.adjust <0.05, among which glycerophospholipid and sphingolipid metabolism pathways were the most abundant. In conclusion, the addition of NCG in late-gestation cows appears to primarily affect calf growth and development through the regulation of phospholipid metabolism, which plays a role in nerve conduction, brain activity, and cell metabolism and function. This study provides valuable insights into how nutritional supplementation by late-gestation cows might improve the growth and development of newborn calves.
Collapse
Affiliation(s)
- Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Youli Yu
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yansheng Guo
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| |
Collapse
|
3
|
Loor JJ, Lopreiato V, Palombo V, D’Andrea M. Physiological impact of amino acids during heat stress in ruminants. Anim Front 2023; 13:69-80. [PMID: 37841758 PMCID: PMC10575319 DOI: 10.1093/af/vfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Affiliation(s)
- Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Università degli Studi di Messina, Viale Palatucci snc 98168, Messina, Italy
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| | - Mariasilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via De Sanctis snc 86100, Campobasso, Italy
| |
Collapse
|
4
|
Halli K, Cohrs I, Brügemann K, Koch C, König S. Effects of temperature-humidity index on blood metabolites of German dairy cows and their female calves. J Dairy Sci 2023; 106:7281-7294. [PMID: 37500442 DOI: 10.3168/jds.2022-22890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/31/2023] [Indexed: 07/29/2023]
Abstract
Heat stress (HS) impairs productivity, health, and welfare in dairy cows, and additionally causes metabolic changes. Hence, specific metabolites could be used as HS biomarkers. Consequently, the aim of the present study was to compare blood metabolite concentrations of German Holstein dairy cows and of their female calves suffering from high temperature-humidity index (THI) during late gestation (cows) or during their first week of life (calves) or not. According to the mean daily THI (mTHI) at the day before blood sampling, animals were classified into 2 groups: high mTHI ≥60 (hmTHI) and low mTHI <60 (lmTHI). To perform a standard cross-sectional 2-group study, cow groups (n = 48) and calf groups (n = 47) were compared separately. Differences in metabolite concentrations between hmTHI and lmTHI animals were inferred based on a targeted metabolomics approach. In the first step, processed metabolomics data were evaluated by multivariate data analysis techniques, and were visualized using the web-based platform MetaboAnalyst V5.0. The most important metabolites with pronounced differences between groups were further analyzed in a second step using linear mixed models. We identified 9 thermally sensitive metabolites for the cows [dodecanedioic acid; 3-indolepropionic acid; sarcosine; triglycerides (14:0_34:0), (16:0_38:7), (18:0_32:1), and (18:0_36:2); phosphatidylcholine aa C38:1; and lysophosphatidylcholine a C20:3] and for the calves [phosphatidylcholines aa C38:1, ae C38:3, ae C36:0, and ae C36:2; cholesteryl esters (17:1) and (20:3); sphingomyelins C18:0 and C18:1; and p-cresol sulfate], most of them related to lipid metabolism. Apart from 2 metabolites (3-indolepropionic acid and sarcosine) in cows, the metabolite plasma concentrations were lower in hmTHI than in lmTHI groups. In our heat-stressed dry cows, results indicate an altered lipid metabolism compared with lactating heat-stressed cows, due to the missing antilipolytic effect of HS. The results also indicate alterations in lipid metabolism of calves due to high mTHI in the first week of life. From a cross-generation perspective, high mTHI directly before calving seems to reduce colostrum quality, with detrimental effects on metabolite concentrations in offspring.
Collapse
Affiliation(s)
- K Halli
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390 Giessen, Germany.
| | - I Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - K Brügemann
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390 Giessen, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390 Giessen, Germany
| |
Collapse
|
5
|
Effects of Different Dietary Protein Level on Growth Performance, Rumen Fermentation Characteristics and Plasma Metabolomics Profile of Growing Yak in the Cold Season. Animals (Basel) 2023; 13:ani13030367. [PMID: 36766256 PMCID: PMC9913104 DOI: 10.3390/ani13030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
This experiment was aimed to compare the effects of two diets with different protein content on the growth performance, immune indexes, rumen fermentation characteristics and plasma metabolomics of growing yak in the cold season. A total of 24, 2-year-old healthy yaks with similar body weight (142.9 ± 3.56 kg) were randomly allocated to two isoenergetic diets with different protein content (10 vs 14%) according to a non-paired experimental design, and the protein of the diets was increased by increasing soybean meal, rapeseed meal and cottonseed meal. The growth performance experiment lasted 56 days. Four days before the end of the growth experiment, the digestion trial was conducted, and the rumen fluid and plasma was collected for measurement. The results showed that the average daily feed intake (p < 0.001) and average daily gain (p = 0.006) of yak fed a high-protein diet was significantly greater, while the feed conversion ratio was lower (p = 0.021) than that of yaks fed a low-protein diet. Plasma aspartate aminotransferase (p = 0.002), alanine aminotransferase (p < 0.001), malondialdehyde (p = 0.001), tumor necrosis factor-α (p = 0.032) and interferon-γ (p = 0.017) of the high-protein group were significantly lesser, whereas superoxide dismutase (p = 0.004) and interleukin-2 (p = 0.007) was significantly greater than that of the low-protein group. The rumen microbial crude protein (p < 0.047) and crude protein digestibility (p = 0.015) of yak fed a high-protein diet was significantly greater than that of the low-protein group. The metabolomics results showed that yaks fed a high-protein diet were elevated in protein digestion and absorption, arginine and proline metabolism, tryptophan metabolism, purine metabolism, butanoate metabolism, taste transduction, pyrimidine metabolism, pantothenate and CoA biosynthesis, glutathione metabolism and renin secretion pathways. It is concluded that a high-protein diet in the cold season can promote rumen microbial crude protein synthesis, enhance antioxidant and immune function and promote growth performance of yaks.
Collapse
|
6
|
Identification of Potential Biomarkers and Metabolic Pathways of Different Levels of Heat Stress in Beef Calves. Int J Mol Sci 2022; 23:ijms231710155. [PMID: 36077553 PMCID: PMC9456105 DOI: 10.3390/ijms231710155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Heat stress (HS) damages the global beef industry by reducing growth performance causing high economic losses each year. However, understanding the physiological mechanisms of HS in Hanwoo calves remains elusive. The objective of this study was to identify the potential biomarkers and metabolic pathways involving different levels of heat stress in Hanwoo calves. Data were collected from sixteen Hanwoo bull calves (169.6 ± 4.6 days old, BW of 136.9 ± 6.2 kg), which were maintained at four designated ranges of HS according to the temperature−humidity index (THI) including: threshold (22 to 24 °C, 60%; THI = 70 to 73), mild (26 to 28 °C, 60%; THI = 74 to 76), moderate (29 to 31 °C, 80%; THI = 81 to 83), and severe (32 to 34 °C, 80%; THI = 89 to 91) using climate-controlled chambers. Blood was collected once every three days to analyze metabolomics. Metabolic changes in the serum of calves were measured using GC-TOF-MS, and the obtained data were calculated by multivariate statistical analysis. Five metabolic parameters were upregulated and seven metabolic parameters were downregulated in the high THI level compared with the threshold (p < 0.05). Among the parameters, carbohydrates (ribose, myo-inositol, galactose, and lactose), organic compounds (acetic acid, urea, and butenedioic acid), fatty acid (oleic acid), and amino acids (asparagine and lysine) were remarkably influenced by HS. These novel findings support further in-depth research to elucidate the blood-based changes in metabolic pathways in heat-stressed Hanwoo beef calves at different levels of THI. In conclusion, these results indicate that metabolic parameters may act as biomarkers to explain the HS effects in Hanwoo calves.
Collapse
|
7
|
N-carbamylglutamate Improves Feed Conversion Efficiency, Feed Digestibility and Immunity Status in Finishing Holstein Bulls. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li Y, Ma N, Ren L, Wang M, Hu L, Shen Y, Cao Y, Li Q, Li J, Gao Y. Microbiome-Metabolome Responses in Ruminal Content and Feces of Lactating Dairy Cows With N-Carbamylglutamate Supplementation Under Heat Stress. Front Vet Sci 2022; 9:902001. [PMID: 35812889 PMCID: PMC9260145 DOI: 10.3389/fvets.2022.902001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study was to investigate the effects of N-carbamylglutamate (NCG) supplementation on metabolic profile and microbiota in ruminal content and feces of lactating dairy cows under heat stress (HS). Forty-eight lactating Holstein cows (154 ± 13.6 days in milk) were assigned randomly to four treatments (n = 12), to receive 0, 15, 20, or 25 g/day of commercial NCG (proportion: 97.7%) for the period of 60 days. The recorded ambient temperature–humidity index (THI) suggested that the cows were exposed to HS for almost the entire experimental period (average THI: 80.6). Samples of ruminal content and feces were collected at the end of the trial (day 60) to determine the biological effects of NCG supplementation on metabolome and microbiota using mass spectrometry-based metabolomics and 16S rRNA gene sequencing techniques, respectively. Results showed that NCG supplementation enhanced the levels of ruminal microbial protein, total volatile fatty acids (VFAs), and the molar proportion of propionate in the rumen, but lowered the ruminal pH, ammonia nitrogen (NH3-N), and the ratio of acetate to propionate. NCG at doses of 20 and 25 g/day reduced the community richness and diversity of ruminal microbiota with the decrease of Shannon and Simpson diversity. Compositions of ruminal and fecal microbiotas were altered by NCG, and the PICRUSt results revealed that metabolic pathways of the bacteria, such as amino acid metabolism, energy metabolism, and pyruvate metabolism, were enriched in NCG groups. Distinct changes in the metabolomic profile of ruminal fluid were observed between the control and NCG groups. Changes of 26 metabolites mainly involved in arginine metabolism, glutamate metabolism, and nitrogen metabolism were observed associated with NCG supplementation. These results provided new insights into the effects of NCG on metabolomic profile and microbiota in ruminal content and feces, and the optimal dose of NCG supplemented to dairy cows was 20 g/hd/day, which contributed to understanding the effects of NCG on HS in lactating dairy cows.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Liyuan Ren
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Linqi Hu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, China
- *Correspondence: Jianguo Li
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, China
- Yanxia Gao
| |
Collapse
|
9
|
Dietary provision of N-carbamoylglutamate to Holstein cows: A strategy to enhance the productive and reproductive efficiency during summer. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|