1
|
Nunes AT, Faleiros CA, Poleti MD, Novais FJ, López-Hernández Y, Mandal R, Wishart DS, Fukumasu H. Unraveling Ruminant Feed Efficiency Through Metabolomics: A Systematic Review. Metabolites 2024; 14:675. [PMID: 39728456 DOI: 10.3390/metabo14120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Advancements in metabolomic technologies have revolutionized our understanding of feed efficiency (FE) in livestock, offering new pathways to enhance both profitability and sustainability in ruminant production. METHODS This review offers a critical and systematic evaluation of the metabolomics methods used to measure and assess FE in ruminants. We conducted a comprehensive search of PubMed, Web of Science, and Scopus databases, covering publications from 1971 to 2023. This review synthesizes findings from 71 studies that applied metabolomic approaches to uncover the biological mechanisms driving interindividual variations in FE across cattle, sheep, goats, and buffaloes. RESULTS Most studies focused on cattle and employed targeted metabolomics to identify key biomarkers, including amino acids, fatty acids, and other metabolites linked to critical pathways such as energy metabolism, nitrogen utilization, and muscle development. Despite promising insights, challenges remain, including small sample sizes, methodological inconsistencies, and a lack of validation studies, particularly for non-cattle species. CONCLUSIONS By leveraging state-of-the-art metabolomic methods, this review highlights the potential of metabolomics to provide cost-effective, non-invasive molecular markers for FE evaluation, paving the way for more efficient and sustainable livestock management. Future research should prioritize larger, species-specific studies with standardized methods to validate identified biomarkers and enhance practical applications in livestock production systems.
Collapse
Affiliation(s)
- Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| | - Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| | - Francisco J Novais
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yamilé López-Hernández
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Metabolomics and Proteomics Laboratory, CONAHCyT-Autonomous University of Zacatecas, Zacatecas 98066, Mexico
| | - Rupasri Mandal
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| |
Collapse
|
2
|
Aboshady HM, Jorge-Smeding E, Taussat S, Cantalapiedra-Hijar G. Development and validation of a model for early prediction of residual feed intake in beef cattle using plasma biomarkers. Animal 2024; 18:101354. [PMID: 39500057 DOI: 10.1016/j.animal.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Identification of plasma biomarkers for feed efficiency in growing beef cattle offers a promising opportunity for developing prediction models to improve precision feeding strategies. However, these models must accurately predict feed efficiency at early stages of fattening. Our study aimed to evaluate the reliability of candidate biomarkers previously identified in late-fattening cattle when analysed during early fattening stages and to develop diet-specific prediction equations for residual feed intake (RFI). From a total of 364 Charolais bulls across seven cohorts, we selected 64 animals with extreme RFI values. The animals were fed either a corn‑ or grass-silage diets. These animals were chosen from four out of the available seven cohorts. Animals from three cohorts (24 high-RFI and 24 low-RFI, having a mean RFI difference of 1.48 kg/d) were used for biomarker confirmation and prediction model training. Animals from a fourth cohort (8 high-RFI and 8 low-RFI, having a mean RFI difference of 0.98 kg/d) were used for model external validation. Blood samples were collected at the beginning of the feed efficiency test (333 ± 20 days), and plasma underwent targeted metabolomic for 630 metabolites, natural abundance of 15N (δ15N), insulin, and IGF-1 analysis. Seven previously identified plasma biomarkers for RFI in late-fattening beef cattle still kept their capability for discriminating low and high RFI animals when analysed during early fattening stages (P < 0.05). Among these confirmed biomarkers, five were common for both grass- and corn-fed animals (creatinine, β-alanine, triglyceride TG18:0_34:2, symmetric dimethyl-arginine and phosphatidylcholine PC aa C30:2) while two were diet-specific (IGF-1 for grass silage-based diet, and isoleucine for corn silage-based diet. No new plasma biomarkers of RFI were identified at early-fattening stages (false discovery rate > 0.05). Prediction models were developed based on seven confirmed RFI biomarkers analysed during early-fattening. Two logistic regression models incorporating creatinine and either IGF-1 (for grass silage-based diet) or PC aa C30:2 (for corn silage-based diet) effectively distinguished between high- and low-RFI animals with high sensitivity and specificity (area under the curve > 0.80). The biomarkers used in the models showed moderate to high repeatability between early and late fattening stages (0.45 < r < 0.65). The models were successfully externally validated, with more than 85% of animals from the fourth cohort correctly classified. Once validated in larger cohorts and utilising cost-effective and rapid analytical methods, these models could support precision feeding and breeding programmes, aiming to reduce the cost of raising beef cattle.
Collapse
Affiliation(s)
- H M Aboshady
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France; Animal Production Department, Faculty of Agriculture, Cairo University, Giza,Egypt
| | - E Jorge-Smeding
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - S Taussat
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Allice, 149 Rue de Bercy, 75595 Paris Cedex 12, France
| | - G Cantalapiedra-Hijar
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
3
|
Guarnido-Lopez P, Pinna D, Maeda Y, Ogawa Y, BenAouda M, Kohama N, Fukushima M, Nagaoka SI, Kondo N. Phenotypic relationships between meat quality parameters and residual feed intake in Japanese black Wagyu cattle. J Anim Sci 2024; 102:skae192. [PMID: 39022981 PMCID: PMC11315890 DOI: 10.1093/jas/skae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Japanese black Wagyu cattle are renowned for producing some of the world's most highly valued and recognized beef with exceptional marbling. Therefore, the primary focus of genetic selection for Wagyu cattle has historically been on meat quality, particularly achieving high marbling levels. However, even when the price of the final product is high, production costs also remain high, especially considering that most of the feed has to be imported. The objective of this study was to evaluate phenotypic relationships between feed efficiency, specifically residual feed intake (RFI), as the most utilized efficiency index in cattle, and various meat quality parameters in Japanese black cattle in order to determine if a common phenotypic selection for these parameters could be feasible. For this, a total of 39 Wagyu cattle were evaluated for feed efficiency over their entire fattening period (900 d), with a focus on RFI as a key indicator. Animals were fed high-starch diets with vitamin A deprivation to achieve the desired marbling. Results revealed positive correlations between feed efficiency and meat quality in Wagyu cattle. Specifically, animals with higher feed efficiency exhibited superior meat quality traits, including firmness, marbling, and overall meat rating. When comparing the 20 most extreme RFI individuals (10 most and 10 least efficient), we observed that efficient RFI animals showed increased marbling levels (+13.2%, P = 0.05) and ranking quality (+12%, P = 0.06) of the meat. In conclusion, this research contributes to understanding the interplay between feed efficiency and meat quality in Japanese black Wagyu cattle. Phenotypic correlations observed suggest the possibility of incorporating RFI criteria into genetic selection programs without compromising the prized meat quality traits of Wagyu beef.
Collapse
Affiliation(s)
| | - Danielle Pinna
- Department of Agricultural Sciences, University of Sassari, Sassari 07100, Italy
| | - Yuma Maeda
- Department of Agricultural Sciences, University of Sassari, Sassari 07100, Italy
| | - Yuichi Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mohammed BenAouda
- Department of Animal Science, Institute Agro Dijon, Dijon 21079, France
| | - Namiko Kohama
- Hyogo Prefecture Technology Center for Agriculture, Forestry and Fisheries, Hokubu Agricultural Technology Institute, Asago 669-5254, Japan
| | | | - Shin-ichi Nagaoka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naoshi Kondo
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Moradi M, Warburton CL, Porto-Neto LR, Silva LFP. Estimating the heritability of nitrogen and carbon isotopes in the tail hair of beef cattle. Genet Sel Evol 2024; 56:3. [PMID: 38172694 PMCID: PMC10763070 DOI: 10.1186/s12711-023-00870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The natural abundance of nitrogen (δ15N) and carbon (δ13C) isotopes in animal tissues are used to estimate an animal's efficiency in nitrogen utilization, and their feed conversion efficiency, especially in tropical grazing systems with prolonged protein restriction. It is postulated that selection for improving these two characteristics (δ15N and δ13C) would assist the optimisation of the adaptation in ever-changing environments, particularly in response to climate change. The aim of this study was to determine the heritability of δ15N and δ13C in the tail hair of tropically adapted beef cattle to validate their inclusion in genetic breeding programs. METHODS In total, 492 steers from two breeds, Brahman (n = 268) and Droughtmaster (n = 224) were used in this study. These steers were managed in two mixed breed contemporary groups across two years (year of weaning): steers weaned in 2019 (n = 250) and 2020 (n = 242). Samples of tail switch hair representing hair segments grown during the dry season were collected and analysed for δ15N and δ13C with isotope-ratio mass spectrometry. Heritability and variance components were estimated in a univariate multibreed (and single breed) animal model in WOMBAT and ASReml using three generations of full pedigree. RESULTS The estimated heritability of both traits was significantly different from 0, i.e. 0.43 ± 0.14 and 0.41 ± 0.15 for δ15N and δ13C, respectively. These traits had favourable moderate to high genetic and phenotypic correlations (- 0.78 ± 0.16 and - 0.40 ± 0.04, respectively). The study also provides informative single-breed results in spite of the limited sample size, with estimated heritability values of 0.37 ± 0.19 and 0.19 ± 0.17 for δ15N and δ13C in Brahman, and 0.36 ± 0.21 and 0.46 ± 0.22 for δ15N and δ13C in Droughtmaster, respectively. CONCLUSIONS The findings of this study show, for the first time, that the natural abundances of both nitrogen and carbon isotopes in the tail hair in cattle may be moderately heritable. With further research and validation, tail hair isotopes can become a practical tool for the large-scale selection of more efficient cattle.
Collapse
Affiliation(s)
- Morteza Moradi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Qld, 4343, Australia
| | - Christie L Warburton
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Qld, 4343, Australia
| | | | - Luis F P Silva
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Qld, 4343, Australia.
| |
Collapse
|
5
|
Guarnido-Lopez P, Ortigues-Marty I, David J, Polakof S, Cantalapiedra-Hijar G. Comparative analysis of signalling pathways in tissue protein metabolism in efficient and non-efficient beef cattle: acute response to an identical single meal size. Animal 2023; 17:101017. [PMID: 37948891 DOI: 10.1016/j.animal.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Protein turnover has been associated to residual feed intake (RFI) in beef cattle. However, this relationship may be confounded by feeding level and affected by the composition of the diet being fed. Our aim was to assess postmortem the protein metabolism signalling pathways in skeletal muscle and liver of 32 Charolais young bulls with extreme RFI phenotypes. Bulls were fed two contrasting diets during the whole fattening period but were subjected to a similar and single nutritional stimulus, induced by their respective concentrate, just prior to slaughter. The key targets were protein degradation (autophagy and ubiquitin) and synthesis signalling pathways through western-blot analysis, as well as hepatic transaminase activity. To ensure a precise assessment of all animals at the same postprandial time, they were provided with a test meal (2.5 kg of either a high-starch and high-protein concentrate or high-fibre and low-protein concentrate) 3 hours prior to slaughter, irrespective of their RFI grouping. Blood and tissues were sampled at the slaughterhouse (3 h and 3 h30 postprandially, respectively). In response to an identical single meal size, efficient RFI animals showed higher (P < 0.05) postprandial plasma β-hydroxybutyrate concentrations and insulinemia (only with the high-starch concentrate) than non-efficient animals. Moreover, efficient RFI bulls had lower muscle (P = 0.04) and liver (P = 0.08) ubiquitin protein abundance (degradation pathway) and tended to have lower alanine transaminase activity in the liver (P = 0.06) compared to non-efficient bulls, regardless of diet. A positive correlation between protein degradation potential and amino acid catabolism was identified in this study (r = 0.52, P = 0.004), which was interpreted as being biologically linked to the RFI phenotype. Efficient RFI bulls also had a faster potential for protein synthesis in the muscle, as indicated by their greater ratio of phosphorylated to total form of ribosomal protein S6 kinase (P = 0.05), regardless of diet. Results on protein synthesis pathway in muscle and plasma metabolite concentrations suggested that efficient RFI cattle may have a faster nutrient absorption and insulin responsiveness after feeding than inefficient cattle. We did not find significant differences in hepatic protein synthesis pathways between the two RFI groups (P > 0.05). Our findings suggest that, in response to an identical single meal size, efficient RFI animals exhibited lower activation of tissue protein degradation pathways and faster muscle protein synthesis activation compared to their inefficient counterparts. This pattern was observed regardless of the composition of the tested meals.
Collapse
Affiliation(s)
- P Guarnido-Lopez
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - I Ortigues-Marty
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - J David
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | - S Polakof
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | - G Cantalapiedra-Hijar
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
6
|
Jorge-Smeding E, Polakof S, Bonnet M, Durand S, Centeno D, Pétéra M, Taussat S, Cantalapiedra-Hijar G. Untargeted metabolomics confirms the association between plasma branched chain amino acids and residual feed intake in beef heifers. PLoS One 2022; 17:e0277458. [PMID: 36445891 PMCID: PMC9707789 DOI: 10.1371/journal.pone.0277458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
This study explored plasma biomarkers and metabolic pathways underlying feed efficiency measured as residual feed intake (RFI) in Charolais heifers. A total of 48 RFI extreme individuals (High-RFI, n = 24; Low-RFI, n = 24) were selected from a population of 142 heifers for classical plasma metabolite and hormone quantification and plasma metabolomic profiling through untargeted LC-MS. Most efficient heifers (Low-RFI) had greater (P = 0.03) plasma concentrations of IGF-1 and tended to have (P = 0.06) a lower back fat depth compared to least efficient heifers. However, no changes were noted (P ≥ 0.10) for plasma concentrations of glucose, insulin, non-esterified fatty acids, β-hydroxybutyrate and urea. The plasma metabolomic dataset comprised 3,457 ions with none significantly differing between RFI classes after false discovery rate correction (FDR > 0.10). Among the 101 ions having a raw P < 0.05 for the RFI effect, 13 were putatively annotated by using internal databases and 6 compounds were further confirmed with standards. Metabolic pathway analysis from these 6 confirmed compounds revealed that the branched chain amino acid metabolism was significantly (FDR < 0.05) impacted by the RFI classes. Our results confirmed for the first time in beef heifers previous findings obtained in male beef cattle and pointing to changes in branched-chain amino acids metabolism along with that of body composition as biological mechanisms related to RFI. Further studies are warranted to ascertain whether there is a cause-and-effect relationship between these mechanisms and RFI.
Collapse
Affiliation(s)
- Ezequiel Jorge-Smeding
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genès-Champanelle, France
- Facultad de Agronomía, Departamento de Producción Animal y Pasturas, Universidad de la República, Montevideo, Uruguay
| | - Sergio Polakof
- INRAE, Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Muriel Bonnet
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genès-Champanelle, France
| | - Stephanie Durand
- INRAE, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Delphine Centeno
- INRAE, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mélanie Pétéra
- INRAE, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sébastien Taussat
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- Eliance, Paris, France
| | | |
Collapse
|
7
|
Protein metabolism, body composition and oxygen consumption in young bulls divergent in residual feed intake offered two contrasting forage-based diets. Animal 2022; 16:100558. [PMID: 35696770 DOI: 10.1016/j.animal.2022.100558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
Protein metabolism and body composition have been identified as major determinants of residual feed intake (RFI) in beef cattle fed high-starch fattening diets. This study aimed to evaluate if these two identified RFI determinants in beef cattle are the same across two contrasting silage-based diets. During two consecutive years, an 84-day feed efficiency test (Test A) immediately followed by a second 112-day feed efficiency test (Test B) was carried out using a total of 100 animals offered either one of two diets (either corn silage- or grass silage-based) over 196 days. At the end of Test A, the 32 animals most divergent for RFI (16 extreme RFI animals per diet, eight low RFI and eight high RFI) were identified and evaluated during Test B for their i) N use efficiency (NUE; N retention/N intake) calculated either from a 10-d nitrogen balance trial or from estimations based on body composition changes occurring during the whole experiment (Test A and Test B; 196 days), ii) carcass and whole-body protein turnover rates analysed through the 3-methyl-histidine urinary excretion and the N isotopic turnover rates of urine, respectively, and iii) body composition measured at the slaughterhouse at the end of Test B. Oxygen consumption was measured during Test B for the 100 animals by two GreenFeed systems. Irrespective of the diet, efficient RFI animals tended (P = 0.08) to improve their NUE when N retention was estimated for 196 days or when considering their lower urinary urea-N to total N ratio (P = 0.03). In contrast, NUE calculated during the 10-d N balance showed no differences (P = 0.65) across RFI groups suggesting that this method may not be suitable to capture small NUE differences. Efficient RFI individuals presented higher dressing percentage and muscle deposition in the carcass (P = 0.003) but lighter rumen (P = 0.001), and a trend for lower oxygen consumption (P = 0.08) than inefficient RFI animals irrespective of the diet. Lower protein degradation rates of skeletal muscle and lower protein synthesis rates of plasma proteins were found in efficient RFI cattle but only with the corn silage-based diet (RFI × Diet; P = 0.02). The higher insulinaemia associated with the corn silage-based diet (P = 0.001) seemed to be a key metabolic feature explaining the positive association between protein turnover and RFI only in this diet. Feed N was more efficiently used for growth by efficient RFI animals regardless of the diet but lower protein turnover rates in efficient RFI animals were only observed with corn silage-based diets.
Collapse
|
8
|
Silva LFP, Hegarty RS, Meale SJ, Costa DAF, Fletcher MT. Using the natural abundance of nitrogen isotopes to identify cattle with greater efficiency in protein-limiting diets. Animal 2022; 16 Suppl 3:100551. [PMID: 35688653 DOI: 10.1016/j.animal.2022.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
The difficulty in selecting cattle for higher feed and nitrogen use efficiency (NUE) is an important factor contributing to poor growth and reproductive performance in dry-tropics rangelands. Therefore, the objectives were to examine the cattle variation in retaining nitrogen in a protein-deficient diet and the natural abundance of stable isotopes in body tissues as a practical alternative for the detection of more efficient cattle. In experiment 1, feed efficiency parameters were determined in 89 Brahman steers fed a protein-limiting diet for 70 days, followed by 7 days in metabolism crates for total collection of urine and faeces and calculation of nitrogen retention and NUE. The diet-animal fractionation of nitrogen isotopes (Δ15N) was quantified in tail hair and plasma proteins using isotope-ratio MS. There was a large variation in growth performance, feed efficiency and nitrogen losses among steers. Quantifying Δ15N in tail hair (Δ15Ntail hair) resulted in stronger correlations with feed efficiency and nitrogen metabolism parameters than when quantified in plasma proteins. Δ15Ntail hair was positively correlated with nitrogen losses in urine (r = 0.31, P < 0.01) and faeces (r = 0.25, P = 0.04), leading to a negative correlation with NUE (r = -0.40, P < 0.01). The group of steers with lower Δ15Ntail hair had greater feed efficiency, lower nitrogen losses, and greater NUE. In experiment 2, for evaluation of isotope fraction as a predictor of reproductive performance, 630 Brahman-crossed cows were classified for reproductive performance for 2 years. From this group, 25 cows with poor reproductive performance and 25 cows with good reproductive performance were selected. Tail hair representing 7 months of growth were segmented and analysed for carbon (δ13C) and nitrogen (δ15N) isotope enrichment. Reproductive performance was not associated with diet selection, as there was no difference in tail hair δ13C between groups. However, more productive cows had lower (P < 0.05) tail hair δ15N during the dry season, indicating differences in N metabolism and possibly lower N losses. In addition, cows with better reproductive performance and, therefore, greater nutrient demands, had similar body condition scores and a tendency (P = 0.09) for higher live weight at the end of the trial. In conclusion, the findings of the present study confirm that nitrogen isotope fractionation in tail hair can be used as a predictor of nitrogen losses, NUE, and reproductive performance of Brahman cattle on low-protein diets.
Collapse
Affiliation(s)
- L F P Silva
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Australia.
| | - R S Hegarty
- The University of New England, School of Environmental and Rural Science, Armidale, Australia
| | - S J Meale
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Australia
| | - D A F Costa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Australia
| | - M T Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Australia
| |
Collapse
|
9
|
Correa-Luna M, Johansen M, Noziere P, Chantelauze C, Nasrollahi SM, Lund P, Larsen M, Bayat AR, Crompton LA, Reynolds CK, Froidmont E, Edouard N, Dewhurst R, Bahloul L, Martin C, Cantalapiedra-Hijar G. Nitrogen isotopic discrimination as a biomarker of between-cow variation in the efficiency of nitrogen utilization for milk production: A meta-analysis. J Dairy Sci 2022; 105:5004-5023. [PMID: 35450714 DOI: 10.3168/jds.2021-21498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
Estimating the efficiency of N utilization for milk production (MNE) of individual cows at a large scale is difficult, particularly because of the cost of measuring feed intake. Nitrogen isotopic discrimination (Δ15N) between the animal (milk, plasma, or tissues) and its diet has been proposed as a biomarker of the efficiency of N utilization in a range of production systems and ruminant species. The aim of this study was to assess the ability of Δ15N to predict the between-animal variability in MNE in dairy cows using an extensive database. For this, 20 independent experiments conducted as either changeover (n = 14) or continuous (n = 6) trials were available and comprised an initial data set of 1,300 observations. Between-animal variability was defined as the variation observed among cows sharing the same contemporary group (CG; individuals from the same experimental site, sampling period, and dietary treatment). Milk N efficiency was calculated as the ratio between mean milk N (grams of N in milk per day) and mean N intake (grams of N intake per day) obtained from each sampling period, which lasted 9.0 ± 9.9 d (mean ± SD). Samples of milk (n = 604) or plasma (n = 696) and feeds (74 dietary treatments) were analyzed for natural 15N abundance (δ15N), and then the N isotopic discrimination between the animal and the dietary treatment was calculated (Δ15n = δ15Nanimal - δ15Ndiet). Data were analyzed through mixed-effect regression models considering the experiment, sampling period, and dietary treatment as random effects. In addition, repeatability estimates were calculated for each experiment to test the hypothesis of improved predictions when MNE and Δ15N measurements errors were lower. The considerable protein mobilization in early lactation artificially increased both MNE and Δ15N, leading to a positive rather than negative relationship, and this limited the implementation of this biomarker in early lactating cows. When the experimental errors of Δ15N and MNE decreased in a particular experiment (i.e., higher repeatability values), we observed a greater ability of Δ15N to predict MNE at the individual level. The predominant negative and significant correlation between Δ15N and MNE in mid- and late lactation demonstrated that on average Δ15N reflects MNE variations both across dietary treatments and between animals. The root mean squared prediction error as a percentage of average observed value was 6.8%, indicating that the model only allowed differentiation between 2 cows in terms of MNE within a CG if they differed by at least 0.112 g/g of MNE (95% confidence level), and this could represent a limitation in predicting MNE at the individual level. However, the one-way ANOVA performed to test the ability of Δ15N to differentiate within-CG the top 25% from the lowest 25% individuals in terms of MNE was significant, indicating that it is possible to distinguish extreme animals in terms of MNE from their N isotopic signature, which could be useful to group animals for precision feeding.
Collapse
Affiliation(s)
- M Correa-Luna
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - M Johansen
- Department of Animal Science, Aarhus University, AU Foulum, PO Box 50, DK-8830, Tjele, Denmark
| | - P Noziere
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - C Chantelauze
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB, Clermont, F-63000 Clermont-Ferrand, France
| | - S M Nasrollahi
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - P Lund
- Department of Animal Science, Aarhus University, AU Foulum, PO Box 50, DK-8830, Tjele, Denmark
| | - M Larsen
- Department of Animal Science, Aarhus University, AU Foulum, PO Box 50, DK-8830, Tjele, Denmark
| | - A R Bayat
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland
| | - L A Crompton
- Centre for Dairy Research, Department of Animal Sciences, School of Agriculture, Policy, and Development, University of Reading, Reading, RG6 6AH, United Kingdom
| | - C K Reynolds
- Centre for Dairy Research, Department of Animal Sciences, School of Agriculture, Policy, and Development, University of Reading, Reading, RG6 6AH, United Kingdom
| | - E Froidmont
- Walloon Agricultural Research Center (CRA-W), B-5030 Gembloux, Belgium
| | - N Edouard
- INRAE, Agrocampus-Ouest, PEGASE, 35590 Saint-Gilles, France
| | - R Dewhurst
- SRUC, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - L Bahloul
- Adisseo France S.A.S., 92160 Antony, France
| | - C Martin
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - G Cantalapiedra-Hijar
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France.
| |
Collapse
|