1
|
Paulová T, Malíková L, Lanzoni D, Taubner T, Malík M, Houdková M, Pěchoučková E. Inhibitory Potential of Cannabis Biomass Extracts on Livestock-Associated Staphylococcal and Streptococcal Pathogens. Microorganisms 2025; 13:432. [PMID: 40005797 PMCID: PMC11857943 DOI: 10.3390/microorganisms13020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Diseases caused by staphylococci and streptococci are a serious burden on livestock production, causing significant losses. In addition, the associated antibiotic resistance of these pathogens often makes treatment impossible or prolonged. Cannabis sativa L. contains many compounds with antibacterial properties and shows great potential as a natural antimicrobial agent for agricultural use against both of these bacterial species. The aim of this study was to compare the in vitro antibacterial activity of ethanol extracts from five cultivars of hemp, namely, Bialobrzeskie, Felina 32, Futura 75, mixed and Santhica 27, against Staphylococcus aureus, Streptococcus agalactiae and Streptococcus dysgalactiae. All five cultivars exhibited a certain degree of inhibitory effect against all the pathogens tested with minimum inhibitory concentrations (MICs) ranging from 128 to 2048 μg/mL. The extract from the Santhica 27 cultivar was the most effective antibacterial agent with the lowest MIC value of 128 μg/mL against Str. agalactiae and two clinical isolates of S. aureus, followed by Bialobrzeskie and mixed cultivars with the same growth-inhibitory potential against Str. agalactiae. The extracts from the Felina 32 and Futura 75 cultivars presented only weak activity with MIC values ranging from 256 to 2048 μg/mL. The extract from the Santhica 27 cultivar appears to be a promising product for future use in the treatment of staphylococcal and streptococcal infections in livestock.
Collapse
Affiliation(s)
- Tereza Paulová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; (T.P.); (L.M.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science Prague (IAS), Přátelství 815, 104 00 Prague, Czech Republic;
| | - Lucie Malíková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; (T.P.); (L.M.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science Prague (IAS), Přátelství 815, 104 00 Prague, Czech Republic;
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università Degli Studi di Milano, Via Dell’Università 6, 29600 Lodi, Italy;
| | - Tomáš Taubner
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science Prague (IAS), Přátelství 815, 104 00 Prague, Czech Republic;
| | - Matěj Malík
- Department of Agroenviromental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic;
| | - Markéta Houdková
- Department of Crop Science and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic;
| | - Eva Pěchoučková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic; (T.P.); (L.M.)
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science Prague (IAS), Přátelství 815, 104 00 Prague, Czech Republic;
| |
Collapse
|
2
|
Ntsoane T, Nemukondeni N, Nemadodzi LE. A Systematic Review: Assessment of the Metabolomic Profile and Anti-Nutritional Factors of Cannabis sativa as a Feed Additive for Ruminants. Metabolites 2024; 14:712. [PMID: 39728493 DOI: 10.3390/metabo14120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Cannabis sativa is a high-value crop that can be cultivated for ruminant's feed and medicinal purposes. The demand for Cannabis and Cannabis products has increased since the beginning of 21st century. Objectives: The increase in the production cost of high-protein feeds such as lucerne has led to an urgent need to investigate alternative high-protein sources. Methods: Cannabis has been identified as an alternative to lucerne due to its high protein content. Results: However, the cultivation and uses of Cannabis and its by-products in South Africa is limited due to the strict legislation. The metabolites and nutritional value of Cannabis are influenced by growing conditions and soil type. Furthermore, the available literature has shown that Cannabis contains anti-nutritional factors that may affect feed intake or bioavailability and digestibility. Conclusions: Therefore, it is crucial to employ a processing method that can reduce anti-nutritional factors to promote the feed intake and growth rate of sheep. Fermentation, as a processing method, can reduce anti-nutritional factors found in Cannabis, which will make it a palatable alternative feed supplement for ruminants such as Dorper sheep. Overall, this review paper aimed to examine the available literature on the use of Cannabis as an alternative high-protein feed supplement for Dorper sheep in South Africa.
Collapse
Affiliation(s)
- Tumisho Ntsoane
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| | - Ndivho Nemukondeni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| |
Collapse
|
3
|
Lanzoni D, Grassi Scalvini F, Petrosillo E, Nonnis S, Tedeschi G, Savoini G, Buccioni A, Invernizzi G, Baldi A, Giromini C. Antioxidant capacity and peptidomic analysis of in vitro digested Camelina sativa L. Crantz and Cynara cardunculus co-products. Sci Rep 2024; 14:14456. [PMID: 38914602 PMCID: PMC11196266 DOI: 10.1038/s41598-024-64989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
In recent decades, the food system has been faced with the significant problem of increasing food waste. Therefore, the feed industry, supported by scientific research, is attempting to valorise the use of discarded biomass as co-products for the livestock sector, in line with EU objectives. In parallel, the search for functional products that can ensure animal health and performances is a common fundamental goal for both animal husbandry and feeding. In this context, camelina cake (CAMC), cardoon cake (CC) and cardoon meal (CM), due valuable nutritional profile, represent prospective alternatives. Therefore, the aim of this work was to investigate the antioxidant activity of CAMC, CC and CM following in vitro digestion using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Total phenolic content (TPC) and angiotensin converting enzyme (ACE) inhibitory activity, actively involved in modulating antioxidant properties, were also studied. Further, a peptidomic analysis was adopted to substantiate the presence of bioactive peptides after in vitro digestion. The results obtained confirmed an interesting nutritional profile of CAMC, CC and CM and relevant antioxidant and ACE inhibitory activities. In particular, considering antioxidant profile, CM and CC revealed a significantly higher (10969.80 ± 18.93 mg TE/100 g and 10451.40 ± 149.17 mg TE/100 g, respectively; p < 0.05) ABTS value than CAMC (9511.18 ± 315.29 mg TE/100 g); a trend also confirmed with the FRAP assay (306.74 ± 5.68 mg FeSO4/100 g; 272.84 ± 11.02 mg FeSO4/100 g; 103.84 ± 3.27 mg FeSO4/100 g, for CC, CM and CAMC, respectively). Similar results were obtained for TPC, demonstrating the involvement of phenols in modulating antioxidant activity. Finally, CAMC was found to have a higher ACE inhibitory activity (40.34 ± 10.11%) than the other matrices. Furthermore, potentially bioactive peptides associated with ACE inhibitory, anti-hypertensive, anti-cancer, antimicrobial, antiviral, antithrombotic, DPP-IV inhibitory and PEP-inhibitory activities were identified in CAMC. This profile was broader than that of CC and CM. The presence of such peptides corroborates the antioxidant and ACE profile of the sample. Although the data obtained report the important antioxidant profile of CAMC, CC, and CM and support their possible use, future investigations, particularly in vivo trials will be critical to evaluate and further investigate their effects on the health and performance of farm animals.
Collapse
Affiliation(s)
- Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy.
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Elena Petrosillo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Arianna Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
- Centro Interdipartimentale di Ricerca e Valorizzazione Degli Alimenti, University of Florence, viale Pieraccini 6, 50139, Firenze, Italy
| | - Guido Invernizzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via Dell'Università 6, 29600, Lodi, Italy
- Institute for Food, Nutrition and Health, University of Reading, Reading, RG6 5EU, UK
| |
Collapse
|
4
|
Lanzoni D, Rebucci R, Formici G, Cheli F, Ragone G, Baldi A, Violini L, Sundaram T, Giromini C. Cultured meat in the European Union: Legislative context and food safety issues. Curr Res Food Sci 2024; 8:100722. [PMID: 38559381 PMCID: PMC10978485 DOI: 10.1016/j.crfs.2024.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The current food system, which is responsible for about one third of all global gas emissions, is considered one of the main causes of resource depletion. For this reason, scientific research is investigating new alternatives capable of feeding an ever-growing population that is set to reach 9-11 billion by 2050. Among these, cell-based meat, also called cultured meat, is one possible solution. It is part of a larger branch of science called cellular agriculture, whose goal is to produce food from individual cells rather than whole organisms, tracing their molecular profile. To date, however, cultured meat aroused conflicting opinions. For this reason, the aim of this review was to take an in-depth look at the current European legislative framework, which reflects a 'precautionary approach' based on the assumption that these innovative foods require careful risk assessment to safeguard consumer health. In this context, the assessment of possible risks made it possible not only to identify the main critical points during each stage of the production chain (proliferation, differentiation, scaffolding, maturation and marketing), but also to identify solutions in accordance with the recommendations of the European Food Safety Authority (EFSA). Further, the main challenges related to organoleptic and nutritional properties have been reviewed.. Finally, possible future markets were studied, which would complement that of traditional meat, implementing the offer for the consumer, who is still sceptical about the acceptance of this new product. Although further investigation is needed, the growing demand for market diversification and the food security opportunities associated with food shortages, as well as justifying the commercialisation of cultured meat, would present an opportunity to position cultured meat as beneficial.
Collapse
Affiliation(s)
- D. Lanzoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600, Lodi, Italy
| | - R. Rebucci
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600, Lodi, Italy
| | - G. Formici
- Department of Law, Politics and International Studies, Department of Excellence 2023-2027, Financed Through Funds of the Italian Ministry of University and Research, University of Parma, Via Università 12, 43121, Parma, Italy
| | - F. Cheli
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - G. Ragone
- Department of Italian and Supranational Public Law, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - A. Baldi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600, Lodi, Italy
| | - L. Violini
- Department of Italian and Supranational Public Law, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| | - T.S. Sundaram
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600, Lodi, Italy
| | - C. Giromini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 29600, Lodi, Italy
- CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122, Milano, Italy
| |
Collapse
|