1
|
Gong X, Yan Q, Chen L. Transient receptor potential a1b regulates primordial germ cell numbers and sex differentiation in developing zebrafish. JOURNAL OF FISH BIOLOGY 2025; 106:921-931. [PMID: 39587668 DOI: 10.1111/jfb.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Temperature is a leading environmental factor determining the sex ratio of some animal populations, such as fish, amphibians, and reptiles. However, the underlying mechanism by which temperature affects gender is still poorly understood. Transient receptor potential a1b (Trpa1b) belongs to the ion channel family of transient receptor potentials and exhibits dual thermosensitivity to heat and cold. In this study, we have unveiled a novel function of the trpa1b gene. Zebrafish generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with Trpa1b-null manifest a male-biased sex ratio. The quantity of primordial germ cells (PGCs) in zebrafish is closely linked to gender determination and gonadal development. Yet the role of the trpa1b gene in zebrafish reproductive development remains unexplored in the literature. Our investigation revealed a significant reduction in PGCs in Trpa1b mutant zebrafish compared to their wild-type counterparts 24-h postfertilization (hpf). Transcriptome sequencing of tissues near the reproductive crest of embryos at 1.25 days postfertilization (dpf) revealed differential changes in PGC-related marker genes and genes related to sperm cell development and differentiation. The relative expression of ddx4 and sycp3 genes was significantly downregulated, whereas amh was significantly upregulated at 20 dpf in trpa1b-/- zebrafish. The results of this study provide valuable insights and references for studying the molecular mechanism of sex determination in zebrafish. Undoubtedly, these results will further enhance our understanding of gender differentiation and gonadal development in fish and other vertebrates.
Collapse
Affiliation(s)
- Xiaoting Gong
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianqian Yan
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W. Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology 2020; 161:5638064. [PMID: 31758175 DOI: 10.1210/endocr/bqz024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xuefan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tassinari V, Campolo F, Cesarini V, Todaro F, Dolci S, Rossi P. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand. Cell Death Dis 2015; 6:e1688. [PMID: 25766327 PMCID: PMC4385934 DOI: 10.1038/cddis.2015.56] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/20/2015] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
Abstract
Both fibroblast growth factor 9 (Fgf9) and Kit Ligand (Kl) signal through tyrosine kinase receptors, yet they exert opposite effects on meiotic differentiation in postnatal spermatogonia, Fgf9 acting as a meiosis-inhibiting substance and Kl acting as a promoter of the differentiation process. To understand the molecular mechanisms that might underlie this difference, we tried to dissect the intracellular signaling elicited by these two growth factors. We found that both Fgf9 and Kl stimulate Erk1/2 activation in Kit+ (differentiating) spermatogonia, even though with different time courses, whereas Kl, but not Fgf9, elicits activation of the Pi3k-Akt pathway. Sustained Erk1/2 activity promoted by Fgf9 is required for induction of the autocrine Cripto-Nodal-Smad2/3 signaling loop in these cells. Nodal signaling, in turn, is essential to mediate Fgf9 suppression of the meiotic program, including inhibition of Stra8 and Scp3 expression and induction of the meiotic gatekeeper Nanos2. On the contrary, sustained activation of the Pi3k-Akt pathway is required for the induction of Stra8 expression elicited by Kl and retinoic acid. Moreover, we found that Kl treatment impairs Nodal mRNA expression and Fgf9-mediated Nanos2 induction, reinforcing the antagonistic effect of these two growth factors on the meiotic fate of male germ cells.
Collapse
Affiliation(s)
- V Tassinari
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - F Campolo
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - V Cesarini
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - F Todaro
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - S Dolci
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - P Rossi
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
SHAO JH, XU ZL, QIAN XJ, LIU F, HUANG H. Effect of Combination Regimen of Low-dose Gossypol Acetic Acid with Steroid Hormones on Expression of Protein Kinase C alpha (PKC-α) and Cyclin D1 in Rat Testes. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s1001-7844(12)60029-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Primordial Germ Cell Technologies for Avian Germplasm Cryopreservation and Investigating Germ Cell Development. J Poult Sci 2012. [DOI: 10.2141/jpsa.011161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Cytoskeletal drugs prevent posterior capsular opacification in human lens capsule in vitro. Graefes Arch Clin Exp Ophthalmol 2011; 250:507-14. [PMID: 22138731 DOI: 10.1007/s00417-011-1869-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To determine whether the cytoskeletal drugs H-7 and Latrunculin B (LAT-B) inhibit posterior capsular opacification (PCO) in the cultured human lens capsular bag. METHODS Following extracapsular cataract (lens) extraction in human donor eyes, the capsular bag was prepared and cultured by standard techniques. Forty-eight capsular bags were studied, of which 13 were treated with H-7 (50, 100 or 300 μM), 12 with 1% BSS (vehicle of H-7), 11 with LAT-B (2, 5 or 10 μM), and 12 with 0.25% DMSO (vehicle of LAT-B). Forty out of the 48 capsular bags were from paired eyes of 20 donors, with one bag being treated with H-7/LAT-B and the other with BSS/DMSO for each pair, including 20 for the H-7-BSS protocol and 20 for the LAT-B-DMSO protocol. The medium with the cytoskeletal drug/vehicle was replaced every 3-4 days for 4 weeks. PCO was assessed daily using inverted phase-contrast microscopy, and scored on a 4-point scale. RESULTS In all cultures with BSS or DMSO, residual lens epithelial cells (LECs) on the anterior capsule migrated to and proliferated on the posterior capsule by 3-7 days, and apparent LEC growth on the posterior capsule with severe capsular wrinkling (PCO Grade 3) was seen by 2-3 weeks. When treated continuously with H-7 or LAT-B, the migration and proliferation of LECs and the capsular wrinkling were inhibited in a dose-dependent manner, with the inhibition being complete (PCO Grade 0) in the 300 μM H-7 (n = 8, p < 0.001) or 10 μM LAT-B culture (n = 3, p = 0.002). CONCLUSION H-7 and LAT-B dose-dependently inhibited PCO formation in the cultured human lens capsular bags, suggesting that cytoskeletal drugs might prevent PCO formation after surgery in the human eye.
Collapse
|
7
|
Tian B, Heatley GA, Filla MS, Kaufman PL. Effect of H-7 on secondary cataract after phacoemulsification in the live rabbit eye. J Ocul Pharmacol Ther 2010; 26:533-9. [PMID: 21029019 DOI: 10.1089/jop.2010.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE This study is aimed to determine if the serine-threonine kinase inhibitor H-7 inhibits secondary cataract after phacoemulsification in the live rabbit eye. METHODS Eighteen rabbits underwent extracapsular lens extraction by phacoemulsification in 1 eye. The eye was treated with intravitreal H-7 (300 or 1,200 μM; n = 6 or 5) or balanced salt solution (BSS) (n = 7) immediately after the surgery and twice weekly for 10 weeks. Each eye received slit lamp biomicroscopy once a week, during which posterior capsule opacification (PCO) was evaluated. The eye was then enucleated and the lens capsule was prepared, fixed, and imaged. PCO was evaluated again on the isolated lens capsule under a phase microscope. Soemmering's ring area (SRA) and the entire lens capsule area were measured from capsule images on a computer and the percentage of SRA (PSRA) in the entire capsule area was calculated. Wet weight of the capsule (WW) was determined on a balance. RESULTS No significant difference in PCO was observed in any comparison. No significant differences in SRA, PSRA, and WW were observed between the 300 μM H-7-treated eye and the BSS-treated eye. However, SRA, PSRA, and WW in the 1,200 μM H-7-treated eye were significantly smaller than those in the BSS-treated eye [28.3 ± 16.2 vs. 61.4 ± 8.86 mm(2) (P = 0.001), 33% ± 20% vs. 65% ± 15% (P = 0.01), and 65.6 ± 27.9 vs. 127.0 ±37.3 mg (P = 0.01)]. CONCLUSIONS Intravitreal H-7 (1,200 μM) significantly inhibits Soemmering's ring formation in the live rabbit eye, suggesting that agents that inhibit the actomyosin system in cells may prevent secondary cataract after phacoemulsification.
Collapse
Affiliation(s)
- Baohe Tian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53792-3220, USA.
| | | | | | | |
Collapse
|
8
|
The promoting effect of retinoic acid on proliferation of chicken primordial germ cells by increased expression of cadherin and catenins. Amino Acids 2010; 40:933-41. [DOI: 10.1007/s00726-010-0717-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/03/2010] [Indexed: 02/03/2023]
|
9
|
Zhang DL, Wang KM, Zhang CQ. Ginsenosides stimulated the proliferation of mouse spermatogonia involving activation of protein kinase C. J Zhejiang Univ Sci B 2009; 10:87-92. [PMID: 19235266 DOI: 10.1631/jzus.b0820133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice. Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical demonstration of proliferating cell nuclear antigen (PCNA). After 72-h culture, Sertoli cells formed a confluent monolayer to which numerous spermatogonial colonies attached. Spermatogonia were positive for c-kit staining and showed high proliferating activity by PCNA expression. Ginsenosides (1.0 approximately10 microg/ml) significantly stimulated proliferation of spermatogonia. Activation of protein kinase C (PKC) elicited proliferation of spermatogonia at 10(-8) to 10(-7) mol/L and the PKC inhibitor H(7) inhibited this effect. Likewise, ginsenosides-stimulated spermatogonial proliferation was suppressed by combined treatment of H(7). These results indicate that the proliferating effect of ginsenosides on mouse type A spermatogonia might be mediated by a mechanism involving the PKC signal transduction pathway.
Collapse
Affiliation(s)
- Da-lei Zhang
- Key Laboratory of Animal Epidemic Etiology and Immunological Prevention of the Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|