1
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
2
|
Valencia C, Pérez FA, Matus C, Felmer R, Arias ME. Activation of bovine oocytes by protein synthesis inhibitors: new findings on the role of MPF/MAPKs†. Biol Reprod 2021; 104:1126-1138. [PMID: 33550378 DOI: 10.1093/biolre/ioab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.
Collapse
Affiliation(s)
- Cecilia Valencia
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Felipe Alonso Pérez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carola Matus
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Production Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Novaes MAS, Lima LF, Sá NAR, Ferreira ACA, Paes VM, Souza JF, Alves BG, Gramosa NV, Torres CAA, Pukazhenthi B, Gastal EL, Figueiredo JR. Impact of ethanol and heat stress-dependent effect of ultra-diluted Arnica montana 6 cH on in vitro embryo production in cattle. Theriogenology 2021; 162:105-110. [PMID: 33453574 DOI: 10.1016/j.theriogenology.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023]
Abstract
This study evaluated the effect of adding ultra-diluted and dynamized Arnica montana 6 cH, and its vehicle (0.3% ethanol) to the in vitro maturation (IVM) medium, in the absence (experiment 1) or presence (experiment 2) of heat stress (HS), on bovine oocyte maturation and in vitro embryo production (IVEP). In experiment 1 (n = 902 cumulus oocyte complexes, COCs), the treatments were 1) IVM medium (Control treatment), 2) IVM medium + 0.3% ethanol, and 3) IVM medium + Arnica montana 6 cH. In experiment 2 (n = 1064 COCs), the treatments were 1) IVM medium without HS, 2) IVM medium under HS, 3) IVM medium + ethanol under HS, and 4) IVM medium + Arnica montana under HS. In the absence of HS (experiment 1), the addition of Arnica montana to the IVM medium had a deleterious effect on the IVEP (cleavage and blastocyst rates) and the total cell number/blastocysts. On the other hand, ethanol (0.3%) increased IVEP in relation to the Control and Arnica montana treatments. However, in the presence of HS during IVM (experiment 2), the addition of ethanol or Arnica montana increased IVEP when compared to the HS treatment alone, and the Arnica montana treatment resulted in greater total cell number/blastocysts compared to the other treatments. In conclusion, this study showed for the first time that the negative or positive effect of Arnica montana 6 cH on IVEP depends on the culture condition (i.e., absence or presence of HS during IVM). On the other hand, ethanol showed beneficial and consistent results on IVEP regardless of exposure to HS.
Collapse
Affiliation(s)
- M A S Novaes
- Laboratório de Reprodução Animal, Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - L F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - V M Paes
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J F Souza
- Laboratory Brio Genetics and Biotechnology Ltd., Araguaína, Tocantins, Brazil
| | - B G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, GO, Brazil
| | - N V Gramosa
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| | - C A A Torres
- Laboratório de Reprodução Animal, Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - B Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - E L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Shirasawa H, Kumazawa Y, Takahashi K, Goto M, Sato W, Ono N, Togashi K, Makino K, Waga M, Sato N, Terada Y. Kinetics of meiotic maturation in oocytes from unstimulated ovaries and duration of pronucleus presence and preimplantation development. F&S SCIENCE 2020; 1:124-131. [PMID: 35559923 DOI: 10.1016/j.xfss.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the meaning of meiotic maturation kinetics and duration of pronucleus presence (DPP) for parthenogenetic activation outcome. DESIGN Retrospective study. SETTING University hospital. PATIENT(S) Eight patients with endometrioid adenocarcinoma and 65 patients who underwent in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). INTERVENTION(S) After collection of oocytes from nonstimulated ovaries of patients with endometrioid adenocarcinoma, in vitro maturation (IVM) and parthenogenetic activation performed with time-lapse imaging; after ICSI, embryos similarly incubated with time-lapse imaging. MAIN OUTCOME MEASURE(S) Timing of the release of the first polar body (fPB), DPP, and developmental stage with IVM and parthenogenetic activation; after ICSI, assessment of DPP and preimplantation developmental stage. RESULT(S) With IVM, 55.2% of oocytes matured; 53.1% of fPBs were released within 24 hours, and 46.9% of fPBs were released after 24 hours. Regarding developmental stage, oocytes that released fPB later during IVM tended to develop more than oocytes that released the fPB within 24 hours. For embryos from parthenogenetic activation the DPP was statistically significantly shorter than the DPP of embryos from ICSI. With ICSI, the DPP was statistically significantly shorter in embryos that developed to ≥8 cells than embryos whose final development included ≤7 cells. The development rate in parthenogenetic activation was statistically significantly lower than that in ICSI. CONCLUSION(S) Embryo development is negatively affected by DPP that is too short or too long. When the DPP was short with parthenogenetic activation, embryo development did not proceed, indicating that DPP is an important determinant of parthenogenetic activation outcomes as with the timing of fPB release.
Collapse
Affiliation(s)
- Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan.
| | - Yukiyo Kumazawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kazumasa Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Mayumi Goto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Wataru Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Natsuki Ono
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kazue Togashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kenichi Makino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Masato Waga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoki Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
5
|
Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 2020; 10:200118. [PMID: 32673518 PMCID: PMC7574550 DOI: 10.1098/rsob.200118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) signals initiate egg activation across the animal kingdom and in at least some plants. These signals are crucial for the success of development and, in the case of mammals, health of the offspring. The mechanisms associated with fertilization that trigger these signals and the molecules that regulate their characteristic patterns vary widely. With few exceptions, a major contributor to fertilization-induced elevation in cytoplasmic Ca2+ is release from endoplasmic reticulum stores through the IP3 receptor. In some cases, Ca2+ influx from the extracellular space and/or release from alternative intracellular stores contribute to the rise in cytoplasmic Ca2+. Following the Ca2+ rise, the reuptake of Ca2+ into intracellular stores or efflux of Ca2+ out of the egg drive the return of cytoplasmic Ca2+ back to baseline levels. The molecular mediators of these Ca2+ fluxes in different organisms include Ca2+ release channels, uptake channels, exchangers and pumps. The functions of these mediators are regulated by their particular activating mechanisms but also by alterations in their expression and spatial organization. We discuss here the molecular basis for modulation of Ca2+ signalling at fertilization, highlighting differences across several animal phyla, and we mention key areas where questions remain.
Collapse
Affiliation(s)
- Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Funeshima N, Noguchi T, Onizawa Y, Yaginuma H, Miyamura M, Tsuchiya H, Iwata H, Kuwayama T, Hamano S, Shirasuna K. The transfer of parthenogenetic embryos following artificial insemination in cows can enhance pregnancy recognition via the secretion of interferon tau. J Reprod Dev 2019; 65:443-450. [PMID: 31378757 PMCID: PMC6815739 DOI: 10.1262/jrd.2019-026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repeat breeding is a reproductive disorder in cattle. Embryo transfer following artificial insemination (AI) improves pregnancy rate by replenishing interferon tau (IFNT), but it results in a notably higher rate of twin occurrence. This study hypothesized that parthenogenetic (PA) embryo transfer following AI (AI + PA) could improve the conception rate because that PA embryo become as a supplemental source of IFNT without twins. PA embryos showed higher IFNT mRNA expression than in vitro fertilization (IVF) embryos. An examination of the effect of the cultured conditioned media (CM) of PA or IVF embryos on Madin-Darby bovine kidney cells with stably introduced promoter-reporter constructs of interferon-stimulated gene 15 (ISG15, marker of IFN response) showed higher stimulation levels of ISG15 promoter activity with PA than with IVF embryo. We investigated in vivo the effect of AI + PA on healthy Japanese Black cattle. Cattle transferred with PA embryo alone were non-fertile, but those that underwent AI + PA showed a pregnancy rate of 53.3%, the similar as that with AI alone (60%). In pregnant cattle in AI + PA group, adding the PA embryo upregulated the expression of ISGs and plasma progesterone concentration. No twin were generated in AI only and AI + PA groups. Using repeat breeding Holstein cows that did not become pregnant with 4-9 times of AI, transfer of PA embryo following AI resulted in a higher pregnancy rate than that of control (AI only). We suggest that AI + PA may be beneficial for improving maternal pregnancy recognition in repeat breeder cattle while avoiding twin generation.
Collapse
Affiliation(s)
- Natsumi Funeshima
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Tatsuo Noguchi
- University Farm, Tokyo University of Agriculture, Shizuoka 418-0109, Japan
| | - Yuri Onizawa
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hikari Yaginuma
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Motoharu Miyamura
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Hideki Tsuchiya
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Seizo Hamano
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan.,Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Gunma 371-0121, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
7
|
In-vitro development of vitrified–warmed bovine oocytes after activation may be predicted based on mathematical modelling of cooling and warming rates during vitrification, storage and sample removal. Reprod Biomed Online 2018; 36:500-507. [DOI: 10.1016/j.rbmo.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 01/26/2023]
|
8
|
Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. J Cell Physiol 2016; 232:976-981. [PMID: 27791263 DOI: 10.1002/jcp.25670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Calcium (Ca++ ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca++ in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca++ from internal stores and/or Ca++ influx from extracellular medium causes moderate increase of intracellular Ca++ ([Ca++ ]i) level and reactive oxygen species (ROS). Increase of Ca++ as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca++ ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca++ ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca++ exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca++ ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca++ regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Hernández-Pichardo JE, Ducolomb Y, Romo S, Kjelland ME, Fierro R, Casillas F, Betancourt M. Pronuclear formation by ICSI using chemically activated ovine oocytes and zona pellucida bound sperm. J Anim Sci Biotechnol 2016; 7:65. [PMID: 27826442 PMCID: PMC5100180 DOI: 10.1186/s40104-016-0124-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
Background In order to improve ICSI, appropiate sperm selection and oocyte activation is necessary. The objective of the present study was to determine the efficiency of fertilization using ICSI with chemically activated ovine oocytes and sperm selected by swim up (SU) or swim up + zona pellucida (SU + ZP) binding. Results Experiment 1, 4–20 replicates with total 821 in vitro matured oocytes were chemically activated with ethanol, calcium ionophore or ionomycin, to determine oocyte activation (precense of one PN). Treatments showed similar results (54, 47, 42 %, respectively) but statistically differents (P < 0.05) than mechanical activated oocytes in sham, ICSI and sham injection (13, 25, 32 %, respectively) (10–17 replicates; n = 429). Experiment 2: Twelve ejaculates and 28 straws of semen were used (11–19 replicates). Sperm were selected by SU in BSA-TCM 199-H medium. A total of 2,294 fresh sperm and 2,760 from frozen-thawed semen were analyzed after SU or SU + ZP binding. Fresh sperm selected by SU showed acrosome reaction (AR) of 59 %, the sperm selected by SU + ZP binding increased AR to 91 %. In comparison, the AR of frozen-thawed sperm using SU or SU + ZP binding was 77 and 86 %, respectively (P < 0.05). Experiment 3: fertilization in 200 mechanical activativated oocytes (17 replicates) was 4 %, but fertilization increased in ethanol activated oocytes after ICSI (12-28 %) (5–6 replicates). When fresh sperm only selected by SU were injected to 123 oocytes, a fertilization rate (28 %) was achieved; in sperm selected by SU + ZP was 25 % (73 oocytes). In comparison, in frozen-thawed sperm selected by SU, fertilization was 13 % (70 oocytes), whereas sperm from SU + ZP binding displayed 12 % (51 oocytes) (P > 0.05). Conclusions Chemical activation induces higher ovine oocyte activation than mechanical activation. Ethanol slightly displays higher oocyte activation than calcium ionophore and ionomicine. Sperm selection with SU + ZP increased AR/A and AR/D rates in comparison with SU in fresh and frozen-thawed sperm. According to this, in terms of fertilization rates, chemical activation after ICSI increased oocyte PN formation compared to mechanical activation. Also, fresh sperm treated with SU and SU + ZP were significantly different than frozen-thawed sperm, but between sperm treatments no significant differences were obtained.
Collapse
Affiliation(s)
- J E Hernández-Pichardo
- División de Ciencias Biológicas y de la Salud, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico ; Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Y Ducolomb
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, CP 09340 Ciudad de México, Mexico
| | - S Romo
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores Cuautitlán, UNAM, Ciudad de México, Estado de México Mexico
| | - M E Kjelland
- Conservation, Genetics & Biotech, LLC, Valley City, ND USA
| | - R Fierro
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, CP 09340 Ciudad de México, Mexico
| | - F Casillas
- División de Ciencias Biológicas y de la Salud, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - M Betancourt
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, CP 09340 Ciudad de México, Mexico
| |
Collapse
|
10
|
Effect of anisomycin, a protein synthesis inhibitor, on the in vitro developmental potential, ploidy and embryo quality of bovine ICSI embryos. ZYGOTE 2016; 24:724-32. [PMID: 27140503 DOI: 10.1017/s0967199416000034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Increasing the efficiency of intracytoplasmic sperm injection (ICSI) in domestic animals has been attempted by many researchers, however embryonic development to the blastocyst stage remains low compared with that of in vitro fertilization (IVF) embryos. One of the main problems observed in cattle is inadequate oocyte activation after ICSI. The present study compared the effect of cycloheximide (CHX), 6-dimethylaminopurine (DMAP), and anisomycin (ANY) on the fertilization rate, development, ploidy and quality of bovine embryos generated by ICSI. Although no differences were observed between treatments in terms of cleavage, higher blastocyst rates were observed for ANY (37.3%) compared with CHX (21.8%, P 0.05) treatments. No differences were observed in the quality of embryos as assessed by the total number of cells, their distribution to the different embryo compartments [inner cell mass (ICM) and trophectoderm (TE)], the proportion of ICM cells to the total cell numbers and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive cells. Similarly, no differences were observed in the normal ploidy of embryos (56, 67, and 55%) for ANY, CHX and DMAP, respectively. However, higher fertilization rates were observed for ANY (75%) and CHX (87%) treatments compared with DMAP (35%). In conclusion, ANY showed a superior developmental rate compared with CHX treatment. Although no significant differences were observed compared with an improved protocol of DMAP (2Io-DMAP), the lower fertilization rate recorded with DMAP strongly suggests that ANY could be a better alternative for oocyte activation than traditional chemical compounds used currently in ICSI.
Collapse
|
11
|
|
12
|
Felmer R, Arias ME. Activation treatment of recipient oocytes affects the subsequent development and ploidy of bovine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Mol Reprod Dev 2015; 82:441-9. [DOI: 10.1002/mrd.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
- R. Felmer
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera; Temuco Chile
- Faculty of Agriculture and Forestry; Department of Agricultural Sciences and Natural Resources; Universidad de La Frontera; Temuco Chile
| | - M. E. Arias
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera; Temuco Chile
| |
Collapse
|
13
|
Liu Y, Han XJ, Liu MH, Wang SY, Jia CW, Yu L, Ren G, Wang L, Li W. Three-day-old human unfertilized oocytes after in vitro fertilization/intracytoplasmic sperm injection can be activated by calcium ionophore a23187 or strontium chloride and develop to blastocysts. Cell Reprogram 2014; 16:276-80. [PMID: 24960285 DOI: 10.1089/cell.2013.0081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our objective was to observe the effectiveness of the calcium ionophore A23187 or strontium chloride on the activation and subsequent embryonic development of 3-day-old human unfertilized oocytes after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). A total of 279 3-day-old unfertilized oocytes after IVF or ICSI were randomized to be activated by the calcium ionophore A23187 (n=138) or strontium chloride (n=141). The activated oocytes were cultured in vitro for 3-5 days. Activation rate, pronucleus formation, cleavage rate, and developmental potential of parthenotes during culture were evaluated. A total of 170 unfertilized oocytes were activated; 65 developed to cleavage stage, 19 developed to greater than the eight-cell stage, and five blastocysts were obtained. The activation rate of the calcium ionophore A23187 group was higher than that of the strontium chloride group (75.4% and 46.8%, respectively; p<0.05); there was significant difference between two groups (p<0.05). Among the 44 cleaved oocytes in the calcium ionophore A23187 group, eight developed to the two- to four-cell stage, 17 developed to the five- to eight-cell stage, 15 developed to greater than the eight-cell stage, and four blastocysts were obtained. Among the 21 cleaved oocytes in the strontium chloride group, six developed to the two- to four- cell stage, 10 developed to the five- to eight-cell stage, four developed to greater than the eight-cell stage, and one blastocyst was obtained. Three-day-old unfertilized human oocytes after IVF or ICSI could be activated by the calcium ionophore A23187 or strontium chloride, and a small part of parthenogenetic embryos developed into blastocysts. The treatment with the calcium ionophore A23187 was better than that of strontium chloride in respect to the activation rate of 3-day-old unfertilized human oocytes after IVF or ICSI.
Collapse
Affiliation(s)
- Ying Liu
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Samiec M, Skrzyszowska M. Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod Biol 2014; 14:128-39. [PMID: 24856472 DOI: 10.1016/j.repbio.2013.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
A novel method termed the biological transcomplementary activation (B-TCA) has been recently utilized for the stimulation of porcine oocytes reconstituted by somatic cell nuclear transfer (SCNT). The use of cytosolic components originating from fertilized (FE) rabbit zygotes as the stimuli for the B-TCA of SCNT-derived pig oocytes appeared to be a highly efficient strategy applied to promote the in vitro development of cloned embryos, leading to a significant improvement in the blastocyst yield (43.6%) compared to the yields achieved using the standard protocol of simultaneous fusion and electrical activation (SF-EA; [31.3%]) or the protocol of delayed electrical activation (D-EA) independent of extracellular Ca(2+) ions (0%). The FE rabbit zygote cytoplast-mediated B-TCA resulted in the increased blastocyst formation rate of porcine cloned embryos as compared to the B-TCA triggered by either cytoplasts isolated from pig parthenogenotes (PAs; [27.8%]) or rabbit PA-descended cytoplasts (0%). A considerably lower percentage of blastocysts containing apoptotic and/or necrotic (annexin V-eGFP-positive) cells were obtained from the SCNT-derived oocytes stimulated by the FE rabbit zygote cytoplast-based B-TCA (22.2%) compared to those stimulated using the SF-EA protocol (35.1%). In contrast to the B-TCA induced by FE rabbit zygote cytoplasts, apoptosis/necrosis incidence decreased totally among the cloned pig blastocysts that developed from reconstituted oocytes undergoing the porcine PA cytoplast-evoked B-TCA. In conclusion, the FE rabbit zygote cytoplast-mediated B-TCA turned out to be a relatively effective strategy for the in vitro production of porcine blastocyst clones of higher quality compared to those created using the standard SF-EA approach.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Cracow, Poland.
| | - Maria Skrzyszowska
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Cracow, Poland
| |
Collapse
|
15
|
Ranjan R, Singh RK, Yasotha T, Kumar M, Puri G, Kumar K, Singh R, Bhure S, Malakar D, Bhanja SK, Sarkar M, Das BC, Bag S. Effect of actin polymerization inhibitor during oocyte maturation on parthenogenetic embryo development and ploidy in Capra hircus. Biochem Genet 2013; 51:944-53. [PMID: 23846112 DOI: 10.1007/s10528-013-9619-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/18/2013] [Indexed: 10/26/2022]
Abstract
This study was designed to observe the effect of cytochalasin B (CCB) concentrations on ploidy and early development of parthenogenetic embryos in a caprine species. Caprine oocytes were matured in the presence of different concentrations of CCB (5, 10, 15, and 20 μg/ml) and activated by 7% ethanol followed by incubation with 2 mM DMAP. For embryos fertilized in vitro, oocytes were matured in maturation medium without CCB. The cleavage rate and further embryo development were significantly higher (P < 0.05) when oocytes were treated in this way. The percentage of embryos showed higher diploid values in 15 μg/ml CCB (83.66 ± 1.13), followed by 20 (72.22 ± 1.22), 10 (68.57 ± 1.17), and 5 μg/ml (62.00 ± 2.48). These results indicate that CCB with a concentration of 15 μg/ml in maturation medium can be used for the production of diploid parthenogenetic embryos in the caprine species.
Collapse
Affiliation(s)
- R Ranjan
- Reproductive Physiology and Embryo Transfer Technology Laboratory, Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Muñoz M, Penarossa G, Caamaño JN, Díez C, Brevini TAL, Gómez E. Research with parthenogenetic stem cells will help decide whether a safer clinical use is possible. J Tissue Eng Regen Med 2013; 9:325-31. [PMID: 23798507 DOI: 10.1002/term.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 01/07/2023]
Abstract
The derivation and use of parthenogenetic stem cells (pESCs) are envisaged as a reliable alternative to conventional embryonic stem cells. Similar to embryonic stem cells in their proliferation, expression of pluripotency markers and capacity to multilineage differentiation, pESCs are at a lower risk of immune rejection within stem cell-based therapeutics. Moreover, pESCs represent an important model system to study the effect of paternally imprinted genes on cell differentiation. However, currently available information about the genetic and epigenetic behaviour of pESCs is limited. Thus, a detailed look at the biology of parthenogenetic (PG) embryos and PG-derived cell lines would allow gaining insight into the full potential of pESC in biotechnology. In this commentary article we review some features related to the biology of PG embryos and pESCs. In addition, novel traits on bovine pESCs (bpESCs) are discussed.
Collapse
Affiliation(s)
- M Muñoz
- Centro de Biotecnología Animal - SERIDA, La Olla - Deva, Gijón, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Green tea polyphenols added to IVM and IVC media affect transcript abundance, apoptosis, and pregnancy rates in bovine embryos. Theriogenology 2013; 79:186-92. [DOI: 10.1016/j.theriogenology.2012.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 09/27/2012] [Accepted: 10/06/2012] [Indexed: 12/31/2022]
|
18
|
The combined treatment of calcium ionophore with strontium improves the quality of ovine SCNT embryo development. ZYGOTE 2012; 21:139-50. [DOI: 10.1017/s0967199412000470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryPoor embryo quality is a major problem that contributes to the failure of pregnancy in somatic cell nuclear transfer (SCNT). The aims of this study were to improve the quality of ovine SCNT embryos by modifying the conventional activation protocol with the addition of SrCl2. In order to achieve this objective we conducted a series of experiments with in vitro-matured oocytes to optimize conditions for oocyte activation with strontium, and subsequently applied the protocol to SCNT embryos. The results showed that in vitro-matured oocytes could be activated effectively by 10 mM SrCl2 + 5 mg/ml cytochalasin B (CB) for 5 h in the absence of Ca2+ and that the blastocyst rate on day 7 (33.2%) was similar to that in the control group (31.0%) (5 M calcium ionophore [IP] A23187 for 5 min and cultured in CB/cycloheximide [CHX] for 5 h; P > 0.05). In SCNT experiments, the total cell number/blastocyst (104.12 ± 6.86) in the IP + SrCl2/CB-treatment group was, however, significantly higher than that in the control group (81.07 ± 3.39; P < 0.05). Apoptotic index (12.29 ± 1.22%) was significantly lower than the control (17.60 ± 1.39%; P < 0.05) when a combination of IP and SrCl2/CB was applied to SCNT embryos. In addition, karyotyping of the SCNT embryos showed that the percentage of diploid blastocysts in the IP + SrCl2/CB-treatment group was slightly higher than that in the control (P > 0.05). We conclude that the modified activation protocol with IP + SrCl2/CB can improve significantly the quality of ovine SCNT embryos in terms of total cell number, apoptosis and ploidy.
Collapse
|
19
|
The use of parthenotegenetic and IVF bovine blastocysts as a model for the creation of human embryonic stem cells under defined conditions. J Assist Reprod Genet 2012; 29:1039-43. [PMID: 23054358 DOI: 10.1007/s10815-012-9866-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSES Clinical application of human embryonic stem cells will be possible, when cell lines are created under xeno-free and defined conditions. We aimed to establish methodologies for parthenogenetic activation, culture to blastocyst and mechanical isolation of the inner cell mass (ICM) using bovine oocytes, as a model for derivation and proliferation of human embryonic stem cells under defined xeno-free culture conditions. METHODS Cumulus-oocyte-complexes were in vitro matured and activated using Ca(2+)Ionophore and 6-DMAP or in vitro fertilized (IVF). Parthenotes and biparental embryos were cultured to blastocysts, when their ICM was mechanically isolated and placed onto a substrate of fibronectin in StemPro medium. After attachment, primary colonies were left to proliferate and stained for pluripotency markers, alkaline phosphatase and Oct-4. RESULTS Parthenogenesis and fertilization presented significantly different success rates (91 and 79 %, respectively) and blastocyst formation (40 and 43 %, respectively). ICMs from parthenogenetic and IVF embryos formed primary and expanded colonies at similar rates (39 % and 33 %, respectively). Six out of eight parthenogenetic colonies tested positive for alkaline phosphatase. Three colonies were analyzed for Oct-4 and they all tested positive for this pluripotency marker. CONCLUSION Our data show that Ca(2+) Ionophore, and 6-DMAP are efficient in creating large numbers of blastocysts to be employed as a model for human oocyte activation and embryo development. After mechanical isolation, parthenogetic derived ICMs showed a good rate of derivation in fibronectin and Stem-Pro forming primary and expanded colonies of putative embryonic stem cells. This methodology may be a good strategy for parthenogenetic activation of discarded human oocytes and derivation in defined conditions for future therapeutic interventions.
Collapse
|
20
|
High cytosolic free calcium level signals apoptosis through mitochondria-caspase mediated pathway in rat eggs cultured in vitro. Apoptosis 2012; 17:439-48. [PMID: 22311472 DOI: 10.1007/s10495-012-0702-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study was aimed to find out whether an increase of cytosolic free calcium level induces egg apoptosis through mitochondria-caspase mediated pathway. To increase cytosolic free calcium level and morphological apoptotic changes, ovulated eggs were cultured in Ca(2+)/Mg(2+) free media-199 with or without various concentrations of calcium ionophore (0.5, 1, 2, 3, 4 μM) for 3 h in vitro. The morphological apoptotic changes, cytosolic free calcium level, hydrogen peroxide (H(2)O(2)) concentration, catalase activity, cytochrome c concentration, caspase-9 and caspase-3 activities and DNA fragmentation were analyzed. Calcium ionophore induced morphological apoptotic features in a concentration-dependent manner followed by degeneration at higher concentrations (3 and 4 μM). Calcium ionophore increased cytosolic free calcium level, induced generation of hydrogen peroxide (H(2)O(2)) and inhibited catalase activity in treated eggs. The increased H(2)O(2) concentration was associated with increased cytochrome c concentration, caspase-9 and caspase-3 activities that resulted in the induction of morphological features characteristic of egg apoptosis. The increased caspase-3 activity finally induced DNA fragmentation as evidenced by TUNEL positive staining in calcium ionophore-treated eggs. These findings suggest that high cytosolic free calcium level induces generation of H(2)O(2) that leads to egg apoptosis through mitochondria-caspase mediated pathway.
Collapse
|
21
|
Jena M, Malakar D, De A, Garg S, Akshey Y, Dutta R, Sahu S, Mohanty A, Kaushik J. Handmade cloned and parthenogenetic goat embryos – A comparison of different culture media and donor cells. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Abdoon AS, Ghanem N, Kandil OM, Gad A, Schellander K, Tesfaye D. cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology 2012; 77:1240-51. [PMID: 22289221 DOI: 10.1016/j.theriogenology.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 10/14/2022]
Abstract
The retarded development of parthenote embryo could be due to aberrant epigenetic imprinting, which may disrupt many aspects and lead to conceptus demise. The present work was conducted to: 1) compare the development of in vitro produced (IVP) and parthenogenetically developed (P) buffalo embryos from the 2-cell to blastocyst stage; 2) investigate the global gene expression profile and search for new candidate transcripts differing between IVP and P buffalo blastocyst using cDNA microarray analysis (validated by Real Time PCR); 3) follow the particular expression patterns of PLAC8 and OCT4 genes at five different stages of preimplantation development by Real Time PCR; and 4) study the expression of CDX2 at the blastcocyst stage. Cleavage rate was higher (P < 0.05) in P than IVP buffalo embryos, while, progression to blastocyst and number of cells per blastocyst were lower (P < 0.05) in P than IVP blastocysts. Microarray analysis indicate that 56 differentially expressed genes between the two groups, of which 51 genes (91.07%) were up-regulated, and five genes were downregulated in IVP blastocyst, using 1.4 fold-changes as a cutoff. Differentially expressed genes are related to translation, nucleic acid synthesis, cell adhesion and placentation. Validation of candidate genes revealed that the transcript abundance of PTGS2, RPS27A, TM2D3, PPA1, AlOX15, RPLO and PLAC8 were downregulated (7/8) in parthenote blastocyst compared to the IVP blastocyst. PLAC8 gene expression was higher (P < 0.05) at 2-cell, morula and blastocyst stages in IVP embryos compared with parthenote embryos. The OCT4 gene expression was higher (P < 0.05) in 2-cell, 4-cell, 8-cell and blastocysts produced in vitro. In conclusion, the retarded development of parthenogenetic buffalo embryos could be due to downregulation of genes related to translation, nucleic acid synthesis, cell adhesion, and placental development. The low expression of PLAC8 and OCT4 during the different stages of development may be responsible, in part, to the failure of development of parthenote buffalo embryos.
Collapse
Affiliation(s)
- A S Abdoon
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
23
|
Kim HS, Lee JY, Jeong EJ, Yang CJ, Hyun SH, Shin T, Hwang WS. Effects of repetitive ionomycin treatment on in vitro development of bovine somatic cell nuclear transfer embryos. J Reprod Dev 2011; 58:132-9. [PMID: 22134064 DOI: 10.1262/jrd.11-040h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To artificially activate embryos in somatic cell nuclear transfer (SCNT), chemical treatment with ionomycin has been used to induce transient levels of Ca(2+) and initiate reprogramming of embryos. Ca(2+) oscillation occurs naturally several times after fertilization (several times with 15- to 30-min intervals). This indicates how essential additional Ca(2+) influx is for successful reprogramming of embryos. Hence, in this report, the experimental design was aimed at improving the developmental efficiency of cloned embryos by repetitive Ca(2+) transients rather than the commonly used ionomycin treatment (4 min). To determine optimal Ca(2+) inflow conditions, we performed three different repetitive ionomycin (10 µM) treatments in reconstructed embryos: Group 1 (4-min ionomycin treatment, once), Group 2 (30-sec treatment, 4 times, 15-min intervals) and Group 3 (1-min treatment, 4 times, 15-min intervals). Pronuclear formation rates were checked to assess the effects of repetitive ionomycin treatment on reprogramming of cloned embryos. Cleavage rates were investigated on day 2, and the formation rates of blastocysts (BLs) were examined on day 7 to demonstrate the positive effect of repeated ionomycin treatment. In Group 3, a significant increase in BL formation was observed [47/200 (23.50%), 44/197 (22.33%) and 69/195 (35.38%) in Groups 1, 2 and 3, respectively]. Culturing embryos with different ionomycin treatments caused no significant difference among the groups in terms of the total cell number of BLs (164.3, 158.5 and 145.1, respectively). Additionally, expression of the anti-apoptotic Bcl-2 gene and MnSOD increased significantly in Group 3, whereas the expression of the pro-apoptotic Bax decreased statistically. In conclusion, the present study demonstrated that repeated ionomycin treatment is an improved activation method that can increase the developmental competence of SCNT embryos by decreasing the incidence of apoptosis.
Collapse
Affiliation(s)
- Huen Suk Kim
- Sooam Biotech Research Foundation, Seoul 137-851, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Developmental competence of porcine oocytes after in vitro maturation and in vitro culture under different oxygen concentrations. ZYGOTE 2011; 20:1-8. [DOI: 10.1017/s0967199411000426] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryIn this study, we investigated the effect of two oxygen concentrations (5 and 20%) during in vitro maturation (IVM) and during in vitro culture (IVC) on porcine embryo development and analysed differences in gene expression between cumulus–oocyte complexes matured under 5 or 20% oxygen and the resulting blastocysts cultured under 5% or 20% oxygen following parthenogenetic activation. There was no significant difference in oocyte maturation rate. However, the numbers of resulting blastocysts were significantly increased in the 5% IVC group compared with the 20% IVC group. Moreover, the M20C5 treatment group (23.01%) supported greater blastocyst development compared with the M5C5 (14.32%), M5C20 (10.30%), and M20C20 (17.88%) groups. However, total cell numbers were not significantly different among groups. According to mRNA abundance data of multiple genes, each treatment altered the expression of genes in different patterns. GLUT1, G6PD and LDHA were up-regulated in cumulus cells that had been matured in low oxygen, suggesting a higher glucose uptake and an increase in anaerobic glycolysis, whereas cyclin B1 (CCNB) and MnSOD (Mn-superoxide dismutase) were upregulated in cumulus cells that had been matured in high oxygen, which suggests a higher activity of mitosis-promoting factor and antioxidant response. In spite of these differential effects on cumulus cells, oocytes could mature normally regardless of different oxygen concentrations. Therefore, it can be concluded that high oxygen concentration during in vitro maturation and low oxygen during in vitro culture may alter the expression of multiple genes related to oocyte competence and significantly improves embryo development (p < 0.05) but not blastocyst quality.
Collapse
|
25
|
Rascado TDS, Martins LR, Minto BW, de Sá Lorena S, Landim-Alvarenga FDC. Parthenogenetic development of domestic cat oocytes treated with ionomycin, cycloheximide, roscovitine and strontium. Theriogenology 2010; 74:596-601. [DOI: 10.1016/j.theriogenology.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/23/2009] [Accepted: 03/14/2010] [Indexed: 11/28/2022]
|
26
|
Improved parthenogenetic development of vitrified-warmed bovine oocytes activated with 9% ethanol plus 6-DMAP. Theriogenology 2009; 72:643-9. [DOI: 10.1016/j.theriogenology.2009.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/28/2009] [Accepted: 04/18/2009] [Indexed: 11/18/2022]
|
27
|
Gómez E, Caamaño JN, Bermejo-Alvarez P, Díez C, Muñoz M, Martín D, Carrocera S, Gutiérrez-Adán A. Gene expression in early expanded parthenogenetic and in vitro fertilized bovine blastocysts. J Reprod Dev 2009; 55:607-14. [PMID: 19700929 DOI: 10.1262/jrd.09-077m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian oocytes can undergo artificial parthenogenesis in vitro and develop to the blastocyst stage. In this study, using real-time PCR, we analyzed the expression of genes representative of essential events in development. In vitro matured oocytes were either fertilized or activated with ionomycin + 6-DMAP and cultured in simple medium. The pluripotency-related gene Oct3/4 was downregulated in parthenotes, while the de novo methylation DNMT3A gene was unchanged. Among the pregnancy recognition genes, IFN-t was upregulated, PGRMC1 was downregulated and PLAC8 was unchanged in parthenotes. Among the metabolism genes, SLC2A1 was downregulated, while AKR1B1, COX2, H6PD and TXN were upregulated in parthenotes; there was no difference in SLC2A5. Among the genes involved in compaction/blastulation, GJA1 expression increased in parthenotes, but no differences were detected within ATP1A1 and CDH1. Expression of p66(shc) and the Bax/Bcl2 ratio were higher in parthenotes, and there was no difference in p53. Parthenotes and embryos may differ in the way they stimulate apoptosis, with a preponderant role for p66(shc) within parthenotes. Differentially affected functions may also include pluripotency, de novo methylation and early embryonic signalling.
Collapse
Affiliation(s)
- Enrique Gómez
- Animal Genetics and Reproduction, SERIDA, Gijón, Asturias, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
SummaryObjective: To investigate the effects of various activation methods on freeze–thawed rabbit oocytes developmental potential. Methods: Rabbit oocytes were vitrified by cryoleafs and cryoprotected with ethylene glycol and propanediol. After thawing, the oocytes were fertilized by intracytoplasmic sperm injection (ICSI). Surviving oocytes after ICSI were divided into five groups at random. Group 1: Oocytes (n = 30) activated 1 h after ICSI by calcium ionomycin (I0634); Group 2: Oocytes (n = 26) activated by strontium chloride an hour after ICSI; Group 3: Oocytes (n = 33) activated by I0634 twice; Group 4: Oocytes (n = 28) were activated by strontium chloride twice; Control Group: Inactivated oocytes (n = 39). Blastocysts derived from each group were transplanted to recipient rabbits. Results: Rates of fertilization, cleavage and blastocyst formation of Group 3 were higher than those of Group 1 and Group 2 (81.8% vs 33.3% vs 53.8%, 54.5% vs 16.7% vs 26.9%, p < 0.05; 15.2% vs 3.3% vs 7.7%, p > 0.05). The rabbit transplanted with embryos derived from Group 3 became pregnant. Embryos derived from double activation could implant into endometrium. Conclusion: Double activation may increase freeze–thawed oocytes developmental potential. After activation, oocytes cleavage velocity may be faster than that of oocytes without activation.
Collapse
|
29
|
Abdalla H, Hirabayashi M, Hochi S. The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis. Theriogenology 2009; 71:543-52. [DOI: 10.1016/j.theriogenology.2008.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 08/06/2008] [Accepted: 08/18/2008] [Indexed: 11/27/2022]
|
30
|
Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, Lee BC. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009; 46:22-8. [PMID: 18494781 DOI: 10.1111/j.1600-079x.2008.00602.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melatonin is a multifunctional molecule that mediates several circadian and seasonal processes in animal reproduction. Melatonin and its metabolites are antioxidants and free radical scavengers. We investigated the effects of melatonin on porcine oocyte maturation and embryo development. We then investigated the local expression of the melatonin receptor 1 (MT1) gene in cumulus cells, granulosa cells, and the oocytes with the reverse transcription-polymerase chain reaction (RT-PCR) method. We further evaluated the antioxidant effects [reactive oxygen species (ROS) levels in cumulus-oocytes complexes] of melatonin supplementation during in vitro maturation (IVM). Compared with control, melatonin supplementation (10 ng/mL) during IVM resulted in a greater proportion of oocytes extruding the polar body (75.6% versus 84.6%). Significantly greater proportion of parthenogenetically activated oocytes developed to blastocysts when the in vitro medium was supplemented with melatonin; however, cleavage frequency and blastocyst cell number were not affected by the treatment. RT-PCR analysis revealed the expression of MT1 gene in cumulus and granulosa cells but not in oocytes. Melatonin-treated oocytes had significantly lower levels of ROS than did control (untreated) oocytes. We conclude that exogenous melatonin has beneficial effects on nuclear and cytoplasmic maturation during porcine IVM. Some of the observed effects may be mediated by receptor binding and while others may have been receptor independent, e.g., direct free radical scavenging.
Collapse
Affiliation(s)
- Jung-Taek Kang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Gómez E, Gutiérrez-Adán A, Díez C, Bermejo-Alvarez P, Muñoz M, Rodriguez A, Otero J, Alvarez-Viejo M, Martín D, Carrocera S, Caamaño JN. Biological differences between in vitro produced bovine embryos and parthenotes. Reproduction 2008; 137:285-95. [PMID: 19036952 DOI: 10.1530/rep-08-0220] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parthenotes may represent an alternate ethical source of stem cells, once biological differences between parthenotes and embryos can be understood. In this study, we analyzed development, trophectoderm (TE) differentiation, apoptosis/necrosis, and ploidy in parthenotes and in vitro produced bovine embryos. Subsequently, using real-time PCR, we analyzed the expression of genes expected to underlie the observed differences at the blastocyst stage. In vitro matured oocytes were either fertilized or activated with ionomycin +6-DMAP and cultured in simple medium. Parthenotes showed enhanced blastocyst development and diploidy and reduced TE cell counts. Apoptotic and necrotic indexes did not vary, but parthenotes evidenced a higher relative proportion of apoptotic cells between inner cell mass and TE. The pluripotence-related POU5F1 and the methylation DNMT3A genes were downregulated in parthenotes. Among pregnancy recognition genes, TP-1 was upregulated in parthenotes, while PGRMC1 and PLAC8 did not change. Expression of p66(shc) and BAX/BCL2 ratio were higher, and p53 lower, in parthenotes. Among metabolism genes, SLC2A1 was downregulated, while AKR1B1, PTGS2, H6PD, and TXN were upregulated in parthenotes, and SLC2A5 did not differ. Among genes involved in compaction/blastulation, GJA1 was downregulated in parthenotes, but no differences were detected within ATP1A1 and CDH1. Within parthenotes, the expression levels of SLC2A1, TP-1, and H6PD, and possibly AKR1B1, resemble patterns described in female embryos. The pro-apoptotic profile is more pronounced in parthenotes than in embryos, which may differ in their way to channel apoptotic stimuli, through p66(shc) and p53 respectively, and in their mechanisms to control pluripotency and de novo methylation.
Collapse
Affiliation(s)
- Enrique Gómez
- Genética y Reproducción Animal, SERIDA, Asturias, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|