1
|
Blank MH, Kawaoku AJT, Rui BR, Carreira ACO, Hamilton TRDS, Goissis MD, Pereira RJG. Successful xenotransplantation of testicular cells following fractionated chemotherapy of recipient birds. Sci Rep 2024; 14:3085. [PMID: 38321093 PMCID: PMC10847125 DOI: 10.1038/s41598-023-45019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/14/2023] [Indexed: 02/08/2024] Open
Abstract
An essential step in the success of germ cell transplantation is the preparation of the recipient's testicular environment to increase the availability of stem cell niches. However, most methods for this purpose in birds face serious limitations such as partial germ cell depletion, high toxicity and mortality, or the need to use expensive technologies. Here, we validated a simple and practical technique of transferring quail testicular cells into chicken testes depleted of endogenous spermatozoa by fractioned chemotherapy (20 mg/kg/week busulfan for 5 weeks). This protocol resulted in a very low mortality of the treated day-old chicks and, despite maintenance of androgenic activity, sperm production was decreased by 84.3% at 25 weeks of age. NANOG immunostaining revealed that very few to no germ cells were present following treatment with 20 and 40 mg/kg, respectively. RT-qPCR data also showed that c-MYC and NANOG expression declined in these treatments, but GRFα1 and BID expressions remained unaltered among groups. After xenotransplantation, quail germ cells were immunodetected in chicken testes using a species-specific antibody (QCPN), and quail ovalbumin DNA was found in seminal samples collected from chicken recipients. Together, these data confirm that fractionated administration of busulfan in hatchlings is a practical, effective, and safe protocol to prepare recipient male birds capable of supporting xenogeneic spermatogenesis.
Collapse
Affiliation(s)
- Marcel Henrique Blank
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil.
| | | | - Bruno Rogério Rui
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of Sao Paulo, Rua Pangaré 100, São Paulo, 05360-130, Brazil
| | - Thais Rose Dos Santos Hamilton
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil
| | - Ricardo José Garcia Pereira
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga, SP , CEP 13635-900, Brazil.
| |
Collapse
|
2
|
Freezing Protocol Optimization for Iberian Red Deer (Cervus elaphus hispanicus) Epididymal Sperm under Field Conditions. Animals (Basel) 2022; 12:ani12070869. [PMID: 35405858 PMCID: PMC8996857 DOI: 10.3390/ani12070869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 12/23/2022] Open
Abstract
Creating germplasm banks of wild species, such as the Iberian red Deer (Cervus elaphus hispanicus) can be challenging. One of the main difficulties is the obtention and cryopreservation of good-quality reproductive cells when the spermatozoa are obtained from epididymides after death. To avoid a loss of seminal quality during transport, developing alternative methods for cooling and freezing sperm samples under field conditions is necessary. The objective of this study was to evaluate the effects of different durations of equilibrium and different techniques of cooling and freezing on Iberian red deer epididymal sperm quality after thawing to optimize the processing conditions in this species. Three experiments were carried out: (I) evaluation of refrigeration in straws or tubes of 15 mL; (II) study of equilibration period (0, 30, 60, or 120 min); and (III) comparison of four freezing techniques (liquid nitrogen vapor in a tank (C), liquid nitrogen vapor in a polystyrene box (B), dry ice (DY), and placing straws on a solid metallic plate floating on the surface of liquid nitrogen (MP)). For all experiments, sperm motility and kinematic parameters, acrosomal integrity, sperm viability, mitochondrial membrane potential, and DNA integrity were evaluated after thawing. All statistical analyses were performed by GLM-ANOVA analysis. Samples refrigerated in straws showed higher values (p ≤ 0.05) for mitochondrial activity and lower values (p ≤ 0.05) for apoptotic cells. Moreover, the acrosome integrity showed significant differences (p ≤ 0.05) between 0 and 120 min, but not between 30 and 60 min, of equilibration. Finally, no significant differences were found between freezing in liquid nitrogen vapors in a tank or in a box, although there was a low quality after thawing when the samples were cryopreserved in dry ice or by placing straws on a solid metallic plate floating on the surface of liquid nitrogen. In conclusion, under field conditions, it would be possible to refrigerate the sperm samples by storing them in straws with a 120 min equilibration period and freezing them in liquid nitrogen vapors in a tank or box.
Collapse
|
3
|
Silva AMD, Pereira AF, Comizzoli P, Silva AR. Cryopreservation and Culture of Testicular Tissues: An Essential Tool for Biodiversity Preservation. Biopreserv Biobank 2020; 18:235-243. [PMID: 32282240 DOI: 10.1089/bio.2020.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Systematic cryo-banking of reproductive tissues could enhance reproductive management and ensure sustainability of rare mammalian genotypes. Testicular tissues contain a vast number of germ cells, including at early stages (spermatogonia and spermatocytes), that can potentially develop into viable spermatozoa after grafting or culture in vitro, and the resulting sperm cells then can be used for assisted reproductive techniques. The objective of this review was to describe current advances, limitations, and perspectives related to the use of testicular tissue preservation as a strategy for the conservation of male fertility. Testes can be obtained from mature or prepubertal individuals, immediately postmortem or by orchiectomy, but testicular biopsies could also be an alternative to collect samples from living individuals. Testicular fragments can be then cryopreserved by using slow or ultra-rapid freezing, or even vitrification methods. The composition of cryopreservation media can vary according to species-specific characteristics, especially regarding the cryoprotectant type and concentration. Finally, spermatozoa have been usually obtained after xenografting of testicular fragments into severely immunodeficient mice, while this method still has to be optimized after in vitro culture conditions.
Collapse
Affiliation(s)
- Andréia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital, Washington, District of Columbia, USA
| | | |
Collapse
|
4
|
Valdivia M, Castañeda-Zegarra S, Lévano G, Lazo J, Reyes J, Bravo Z, Santiani A, Mujica F, Ruíz J, Gonzales GF. Spermatogonial stem cells identified by molecular expression of PLZF, integrin β1 and reactivity to Dolichos biflorus agglutinin in alpaca adult testes. Andrologia 2019; 51:e13283. [PMID: 30957907 DOI: 10.1111/and.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification system of spermatogonial stem cell (SSC) was established in alpaca using the molecular expression as well as the reactivity pattern to Dolichos biflorus agglutinin (DBA) by flow cytometry. Twenty-four testicles with their epididymis were recovered from adult alpacas at the slaughterhouse of Huancavelica-Perú. Samples were transported to the Laboratory of Reproductive Physiology at Universidad Nacional Mayor de San Marcos. Testes were selected for our study when the progressive motility of epididymal spermatozoa (ESPM) was above 30%. Isolation of SSC was performed with two enzymatic digestions. Finally, sperm viability was evaluated by means of the trypan blue vital stain in spermatogonial round cells. Samples with more than 80% viability were selected. Isolated cells cultured for 2 days were used for identifying the presence of SSCs by the expression of integrin β1 (116 bp) and PLZF (206 bp) genes. Spermatogonia were classified according to the DBA reactivity. Spermatogonia with a strong positive to DBA (sDBA+ ) were classified as SSC (Mean ± SEM=4.44 ± 0.68%). Spermatogonia in early differentiation stages stained weakly positive with DBA (wDBA+ ) (Mean ± SEM=37.44 ± 3.07%) and differentiated round cells as DBA negative (Mean ± SEM=54.12 ± 3.18%). With the use of molecular and DBA markers, it is possible to identify easily the spermatogonial stem cells in alpaca.
Collapse
Affiliation(s)
- Martha Valdivia
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú.,Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sergio Castañeda-Zegarra
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gloria Lévano
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge Lazo
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jhakelin Reyes
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Zezé Bravo
- Laboratory of Animal Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Alexei Santiani
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Fidel Mujica
- Biological Sciences Faculty, Universidad Nacional San Cristóbal de Huamanga, Ayacucho, Perú
| | - Jaime Ruíz
- Laboratory of Reproductive Biotechnology, Faculty of Engineering Sciences, Universidad Nacional de Huancavelica, Huancavelica, Perú
| | - Gustavo F Gonzales
- Endocrine and Reproductive Laboratory, Department of Biological and Physiological Science, Laboratory of Investigation and Development (LID), Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
5
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
6
|
Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 2014; 147:R65-74. [PMID: 24357661 DOI: 10.1530/rep-13-0466] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
7
|
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS One 2012; 7:e36020. [PMID: 22536454 PMCID: PMC3334991 DOI: 10.1371/journal.pone.0036020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/26/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Water buffalo is an economically important livestock species and about half of its total world population exists in India. Development of stem cell technology in buffalo can find application in targeted genetic modification of this species. Testis has emerged as a source of pluripotent stem cells in mice and human; however, not much information is available in buffalo. OBJECTIVES AND METHODS Pou5f1 (Oct 3/4) is a transcription factor expressed by pluripotent stem cells. Therefore, in the present study, expression of POU5F1 transcript and protein was examined in testes of both young and adult buffaloes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Further, using the testis transplantation assay, a functional assay for spermatogonial stem cells (SSCs), stem cell potential of gonocytes/spermatogonia isolated from prepubertal buffalo testis was also determined. RESULTS Expression of POU5F1 transcript and protein was detected in prepubertal and adult buffalo testes. Western blot analysis revealed that the POU5F1 protein in the buffalo testis exists in two isoforms; large (∼47 kDa) and small (∼21 kDa). Immunohistochemical analysis revealed that POU5F1 expression in prepubertal buffalo testis was present in gonocytes/spermatogonia and absent from somatic cells. In the adult testis, POU5F1 expression was present primarily in post-meiotic germ cells such as round spermatids, weakly in spermatogonia and spermatocytes, and absent from elongated spermatids. POU5F1 protein expression was seen both in cytoplasm and nuclei of the stained germ cells. Stem cell potential of prepubertal buffalo gonocytes/spermatogonia was confirmed by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. CONCLUSION/SIGNIFICANCE These findings strongly indicate that gonocytes/spermatogonia, isolated for prepubertal buffalo testis can be a potential target for establishing a germ stem cell line that would enable genetic modification of buffaloes.
Collapse
|
8
|
Reddy N, Kasukurthi KB, Mahla RS, Pawar RM, Goel S. Expression of vascular endothelial growth factor (VEGF) transcript and protein in the testis of several vertebrates, including endangered species. Theriogenology 2011; 77:608-14. [PMID: 22056013 DOI: 10.1016/j.theriogenology.2011.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/10/2011] [Accepted: 08/30/2011] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is known to influence the testis function. To establish the role of VEGF in the testis of a variety of species, we analyzed the expression of VEGF transcript using human gene-specific primers by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis in the testes of 18 vertebrates, including a few endangered species. An amplicon of 566 bp representing VEGF(165) was identified in testis of all species in this study. Sequence analysis of these amplicons revealed 84 to 96% homology to available human VEGF sequence and to the VEGF sequences of other species in GenBank. Immunohistochemical analysis revealed expression of VEGF protein, primarily in Sertoli and Leydig cells and occasionally in the germ cells of the testis sections. It can be concluded from this study that expression of VEGF transcript is conserved in the testis of several vertebrates and may have a role in the process of spermatogenesis.
Collapse
Affiliation(s)
- Niranjan Reddy
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | |
Collapse
|