1
|
Zhao X, Dilixiati A, Zhang L, Aihemaiti A, Song Y, Zhao G, Fu X, Wang X, Wusiman A. Mito-TEMPO Improves the Meiosis Resumption and Mitochondrial Function of Vitrified Sheep Oocytes via the Recovery of Respiratory Chain Activity. Animals (Basel) 2024; 14:152. [PMID: 38200883 PMCID: PMC10778259 DOI: 10.3390/ani14010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Vitrification is a crucial method for preserving animal germ cells. Considering the increased oxidative stress and organelle damage incurred, it is still necessary to make the process more efficient for oocytes. As the energy source of oocytes, mitochondria are the most abundant organelle in oocytes and play a crucial role in their maturation. Here, we found that Mito-TEMPO, a mitochondria-targeted antioxidant, could efficaciously improve the oxidative stress injury of vitrified oocytes by recovering mitochondrial function via the mitochondrial respiratory chain. It was observed that Mito-TEMPO not only improves oocyte viability and meiosis but also maintains spindle structure. A subsequent study indicated that Mito-TEMPO effectively rescued mitochondrial dysfunction and attenuated vitrification-induced oxidative stress. Further investigation revealed that Mito-TEMPO regulates vitrified oocytes' intracellular Ca2+ homeostasis and ATP content and provides strong antioxidant properties. Additionally, an analysis of the transcriptome at the single-cell level revealed that the respiratory chain mediates the beneficial effect of Mito-TEMPO on vitrified oocytes. Overall, our findings indicate that supplementing oocytes with Mito-TEMPO is an effective method to shield them from the damage caused by vitrification. In addition, the beneficial effects of Mito-TEMPO on vitrified sheep oocytes could inspire further investigations of the principles underlying oocyte cryobiology in other animals.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Airixiati Dilixiati
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Aikebaier Aihemaiti
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yukun Song
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guodong Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Xuguang Wang
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Abulizi Wusiman
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Abedpour N, Shoorei H, Rajaei F. Detrimental effects of vitrification on integrin genes (α9 and β1) and in vitro fertilization in mouse oocytes. Mol Biol Rep 2023; 50:4823-4829. [PMID: 37039996 DOI: 10.1007/s11033-023-08377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE Integrins are known as key molecules that importantly involve in fertilization. This study aimed to evaluate effects of vitrification on fertilization rate and expression of integrin genes, α9 and β1, on mice oocytes in GV and MІІ stages. MATERIALS AND METHODS From the ovarian tissue and fallopian tube of NMRI mice, germinal vesicle (GV, n = 200) and metaphase II (MII, n = 200) oocytes were obtained. Then, oocytes were distributed into 4 groups including non-vitrified GV, non-vitrified MII, vitrified GV, and vitrified MII. Cryotop method was used for vitrification and oocytes (for 4 weeks) were kept in liquid nitrogen. After that, by using an inverted microscope, the rate of survived oocytes was assessed. Also, in vitro fertilization (IVF) for oocytes, obtained from in vitro maturated MII and mice ovaries (ovulated MII), was done to assess embryos at differenced stages (2-cells, morula, and hatched). Finally, RT-qPCR was performed to investigate the mRNA expression of integrin genes (α9 and β1). RESULTS After vitrification, the rate of survived oocytes, 68.65%for GV and 65.07% % for MII, did not show a remarkable difference related to non-vitrified groups, while the fertilization rate in vitrified groups remarkably decrease compared to non-vitrified groups (p < 0.05). Also, the expression of α9 and β1 genes was significantly altered in vitrified groups when compared to non-vitrified groups (p < 0.05). There was no significant difference in embryo developmental rates for non-vitrified and vitrified groups. CONCLUSION Cryotop method for vitrification caused an alternation in oocyte quality by reducing fertilization rate and integrin gene expression.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Shoorei
- Department of Anatomical Science, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
Nguyen TV, Do LTK, Namula Z, Lin Q, Torigoe N, Nagahara M, Hirata M, Tanihara F, Otoi T. Development and Genome Mutation of Bovine Zygotes Vitrified Before and After Genome Editing via Electroporation. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND: Cryopreservation of bovine zygotes allows for a flexible schedule of genome editing via electroporation. However, vitrification-induced cell membrane damage may not only affect embryonic development but also genome mutation. OBJECTIVE: To investigate the effects
of vitrification of zygotes before and after electroporation treatments on the development and genome mutation of bovine presumptive zygotes. MATERIALS AND METHODS: In vitro-derived bovine zygotes were electroporated with the CRISPR/Cas9 system immediately (Vitrified-EP) or 2 h after
incubation (Vitrified-2h-EP) following vitrification and warming, or electroporated before vitrification (EP-vitrified). RESULTS: The development rates of vitrified-warmed zygotes were significantly lower (p < 0.05) than those of control zygotes that were not vitrified. Moreover,
no differences were observed in the mutation rates and mutation efficiency of the blastocysts resulting from electroporated zygotes, irrespective of the timing of electroporation treatment. CONCLUSION: Our results suggest that vitrification before and after electroporation treatments
does not affect the genome editing of zygotes.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam
| | - Lanh Thi Kim Do
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam
| | - Zhao Namula
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Zhanjiang, China
| | - Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Fuminori Tanihara
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| |
Collapse
|
4
|
Li LJ, Chao S, Zhao SX, Lu J, Zhang XY, Zhao Y, Zhao MH, Huang GA, Yin S, Sun QY, Zhao L, Ge ZJ. Protocatechuic Acid Delays Postovulatory Oocyte Ageing in Mouse. Mol Nutr Food Res 2023; 67:e2200363. [PMID: 36537853 DOI: 10.1002/mnfr.202200363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/22/2022] [Indexed: 12/24/2022]
Abstract
SCOPE Tea is a popular beverage worldwide and has many health functions. Protocatechuic acid (PCA) is an important bioactive component of tea and has benefit to health. In some cases, oocytes after ovulation may miss the optimal fertilization time and enter a postovulatory ageing process. Therefore, to investigate the role of PCA in delaying oocyte ageing is aimed. METHODS AND RESULTS Metaphase II (MII) oocytes aged in vitro are randomly divided into three groups: control, aged, and aged + PCA. PCA treatment (30 µM) reduces the fragmentation rate and the incidence of abnormal spindle morphology and chromosome misalignment of oocytes aged 24 h in vitro. The mitochondrial dysfunction of aged oocytes, such as decreased mitochondrial membrane potential and excessive accumulation of reactive oxygen (ROS), is also alleviated by PCA. PCA also delays apoptosis of aged oocytes, and improves the sperm binding capacity. Otherwise, aged oocytes treated with PCA have a higher fertilization rate and blastocyst rate compared with untreated aged oocytes in vitro. CONCLUSION PCA is an important bioactive ingredient of tea that improves aged oocyte quality, suggesting that PCA is available to improve the quality of aged oocytes in vitro.
Collapse
Affiliation(s)
- Li-Jun Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Shuo Chao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Shu-Xian Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Jun Lu
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Xiao-Yuan Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, P. R. China
| | - Ming-Hui Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Gui-An Huang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Qing-Yuan Sun
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, P. R. China
| | - Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| |
Collapse
|
5
|
Gonzalez‐Plaza A, Brullo C, Cambra JM, Garcia M, Iacono E, Parrilla I, Gil MA, Martinez EA, Martinez CA, Cuello C. Equilibration time with cryoprotectants, but not melatonin supplementation during in vitro maturation, affects viability and metaphase plate morphology of vitrified porcine mature oocytes. Reprod Domest Anim 2022; 57 Suppl 5:58-63. [PMID: 35567517 PMCID: PMC9790282 DOI: 10.1111/rda.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The aims of this study were to investigate the effects of different equilibration times with cryoprotectants on viability and metaphase plate morphology of vitrified-warmed porcine mature oocytes (Experiment 1) and to evaluate the effects of supplementation with 10-9 M melatonin during in vitro maturation on these parameters (Experiment 2). In Experiment 1, 2,392 mature oocytes were vitrified using different equilibration times of oocytes with cryoprotectants (3, 10, 15, 20, 30, 40, 60 and 80 min). Fresh oocytes matured in vitro for 44 hr (n = 509) were used as controls. In Experiment 2, a total of 573 COCs were used. COCs were matured with 10-9 M melatonin supplementation or without melatonin (control). Some oocytes from each group were vitrified with a 60-min equilibration time with cryoprotectants according to the results of Experiment 1. The remaining oocytes from each maturation group were used as fresh control groups. In both experiments, oocytes were stained with 2',7'-dichlorodihydrofuorescein diacetate and Hoechst 33342 to assess viability and metaphase plate morphology, respectively. Vitrification and warming affected (p < .01) oocyte viability compared with controls, which were all viable after 44 hr of IVM. In Experiment 1, the longer the equilibration time with cryoprotectants, the higher the viability. Oocytes equilibrated for 60 and 80 min had the highest (p < .05) viability and similar metaphase plate characteristics to the fresh control oocytes. In Experiment 2, supplementation with melatonin during in vitro maturation had no effect on oocyte viability or metaphase plate morphology of vitrified-warmed oocytes. In conclusion, under our experimental conditions, vitrified porcine mature oocytes equilibrated with cryoprotectants for 60 or 80 min exhibited the highest viability and similar metaphase plate characteristics to fresh controls. Furthermore, supplementation with 10-9 M melatonin during in vitro maturation had no effect on these parameters.
Collapse
Affiliation(s)
- Alejandro Gonzalez‐Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Cristiano Brullo
- Department of Veterinary Medical Sciences and CIRI‐SDVUniversity of BolognaBolognaItaly
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Manuela Garcia
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences and CIRI‐SDVUniversity of BolognaBolognaItaly
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Maria Antonia Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Cristina A. Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health SciencesLinköping UniversityLinköpingSweden
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| |
Collapse
|
6
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Luo Y, Zhou D, Liu H, Wan P, Hou Y, Fu X. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol 2022; 13:95. [PMID: 35971139 PMCID: PMC9380387 DOI: 10.1186/s40104-022-00742-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation. Antioxidants were always used to antagonist the oxidative stress caused by vitrification. However, the comprehensive mechanism underlying the protective role of antioxidants has not been studied. Procyanidin B2 (PCB2) is a potent natural antioxidant and its functions in response to vitrification are still unknown. In this study, the effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored, and the mechanisms underlying the protective role of PCB2 were systematically elucidated. RESULTS Vitrification induced a marked decline in oocyte quality, while PCB2 could improve oocyte viability and further development after parthenogenetic activation. A subsequent study indicated that PCB2 effectively attenuated vitrification-induced oxidative stress, rescued mitochondrial dysfunction, and improved cell viability. Moreover, PCB2 also acts as a cortical tension regulator apart from strong antioxidant properties. Increased cortical tension caused by PCB2 would maintain normal spindle morphology and promote migration, ensure correct meiosis progression and finally reduce the aneuploidy rate in vitrified oocytes. Further study reveals that ATP biosynthesis plays a crucial role in cortical tension regulation, and PCB2 effectively increased the cortical tension through the electron transfer chain pathway. Additionally, PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and further improve blastocyst quality. What's more, targeted metabolomics shows that PCB2 has a beneficial effect on blastocyst formation by mediating saccharides and amino acids metabolism. CONCLUSIONS Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochondria-mediated cortical tension regulation.
Collapse
Affiliation(s)
- Qingrui Zhuan
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jun Li
- grid.452458.aDepartment of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Xingzhu Du
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Luyao Zhang
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwen Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dan Zhou
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Hongyu Liu
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Wan
- grid.469620.f0000 0004 4678 3979State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| | - Yunpeng Hou
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China. .,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China.
| |
Collapse
|
7
|
Yodrug T, Parnpai R, Hirao Y, Somfai T. Effect of vitrification at different meiotic stages on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Anim Sci J 2021; 92:e13596. [PMID: 34309122 DOI: 10.1111/asj.13596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Vitrification by the Cryotop method is frequently used for bovine oocyte cryopreservation. Nevertheless, vitrified oocytes still have reduced developmental competency compared with fresh counterparts. The objective of this study was to compare the effect of vitrification either at the germinal vesicle (GV) stage or at the metaphase II (MII) stage on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Our results demonstrated that vitrification of oocytes at each meiotic stage significantly reduced blastocyst development after in vitro fertilization (IVF). However, vitrification at the GV stage resulted in higher blastocyst development than did vitrification at the MII stage. Irrespective of the meiotic stage, oocyte vitrification did not affect 5-methylcytosine (5mC) immunostaining intensity in oocyte DNA. However, at both stages, it caused a similar reduction of 5mC levels in DNA of subsequently developing blastocysts. Oocyte vitrification had no effect on the intensity of H3K9me3 and acH3K9 immunostaining in oocytes and subsequent blastocysts. The results suggest that irrespective of meiotic stage, oocyte vitrification alters global methylation in resultant embryos although such alteration in the oocytes was not detected. Oocyte vitrification might not influence histone acetylation and methylation in oocytes and resultant embryos. Vitrification at the immature stage was more advantageous for blastocyst development than at the mature stage.
Collapse
Affiliation(s)
- Thatawat Yodrug
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yuji Hirao
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science (NILGS), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tamas Somfai
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science (NILGS), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
8
|
Do LTK, Wittayarat M, Sato Y, Chatdarong K, Tharasanit T, Techakumphu M, Hirata M, Tanihara F, Taniguchi M, Otoi T. Comparison of Blastocyst Development between Cat-Cow and Cat-Pig Interspecies Somatic Cell Nuclear Transfer Embryos Treated with Trichostatin A. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mateo-Otero Y, Yeste M, Damato A, Giaretta E. Cryopreservation and oxidative stress in porcine oocytes. Res Vet Sci 2021; 135:20-26. [PMID: 33418187 DOI: 10.1016/j.rvsc.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Several vitrification protocols have been established for porcine oocytes so as to facilitate gene banking of female germplasm. Although live piglets have been successfully produced from pig oocytes vitrified at the germinal vesicle (GV) stage, the competence of vitrified oocytes to develop into the blastocyst stage is greatly compromised following cryopreservation. The focus of this review is to elucidate the impact of cryopreservation on the redox balance of pig oocytes, making special reference to the relevance of non-enzymatic and enzymatic antioxidant defences. Besides, the regulation of gene expression in response to oxidative stress is also considered. Finally, we discuss the effects of supplementing maturation and vitrification media with the exogenous non-enzymatic antioxidants that have hitherto yielded the most relevant results.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, E-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, E-17003 Girona, Spain.
| | - Anna Damato
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy.
| |
Collapse
|
10
|
Colombo M, Zahmel J, Jänsch S, Jewgenow K, Luvoni GC. Inhibition of Apoptotic Pathways Improves DNA Integrity but Not Developmental Competence of Domestic Cat Immature Vitrified Oocytes. Front Vet Sci 2020; 7:588334. [PMID: 33178729 PMCID: PMC7596218 DOI: 10.3389/fvets.2020.588334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Being a model for endangered wild felids, cryopreservation protocols for domestic cat oocytes are under continuous development. Immature vitrified oocytes (VOs) are a valuable resource for fertility preservation programs, but they often degenerate after warming and their in vitro development is poor. Since the exact mechanisms are not clear, this study assessed whether vitrification might trigger two apoptotic markers (DNA fragmentation and caspase activity, Experiment I) and the effects of a chemical inhibitor (i.e., the pan-caspase inhibitor Z-VAD-FMK) on the same markers (Experiment II) and on VOs in vitro development (Experiment III). The overarching aim was to check whether apoptosis inhibition might be a strategy to improve cat oocytes cryotolerance. In Experiment I, vitrification induced DNA fragmentation and increased caspase activity in VOs incubated for 24 h after warming (DNA fragmentation: 59.38%; caspase activity: 414.6 ± 326.8) compared to a fresh control (9.68%; 199.6 ± 178.3; p = 0.02). In Experiment II, the addition of Z-VAD-FMK to vitrification-warming and incubation media decreased DNA fragmentation and caspase activity (8.82%; 243.7 ± 106.9) compared to control (untreated) VOs (69.44%; 434.5 ± 248.3; p < 0.001). In Experiment III, Z-VAD-FMK brought maturation rates of treated VOs close to those of fresh oocytes (53.13 and 65.38%, respectively, p = 0.057), but there were no differences in VOs embryo development (cleavage rates; Z-VAD-FMK-treated VOs: 34.38%; control VOs: 31.78%; p = 0.69). In summary, vitrification increased apoptotic markers in cat VOs, and while Z-VAD-FMK was able to hinder DNA damage and caspase activity, its addition was not determinant for embryo development. To make the best use of VOs, other oocyte in vitro maturation and embryo culture strategies, such as the addition of other inhibitors or their prolonged use, should be investigated.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Milan, Italy
| | - Jennifer Zahmel
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Stefanie Jänsch
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Katarina Jewgenow
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Colombo M, Morselli MG, Tavares MR, Apparicio M, Luvoni GC. Developmental Competence of Domestic Cat Vitrified Oocytes in 3D Enriched Culture Conditions. Animals (Basel) 2019; 9:E329. [PMID: 31181674 PMCID: PMC6616943 DOI: 10.3390/ani9060329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023] Open
Abstract
Cryoinjuries severely affect the competence of vitrified oocytes (VOs) to develop into embryos after warming. The use of culture conditions that provide physical and chemical support and resemble the in vivo microenvironment in which oocytes develop, such as 3D scaffolds and coculture systems, might be useful to improve VOs outcomes. In this study, an enriched culture system of 3D barium alginate microcapsules was employed for the in vitro embryo production of domestic cat VOs. Cryotop vitrified-warmed oocytes were in vitro matured for 24 h in the 3D system with or without fresh cumulus-oocyte complexes (COCs) in coculture, whereas a control group of VOs was cultured in traditional 2D microdrops of medium. After in vitro fertilization, presumptive embryos were cultured in 3D or 2D systems according to the maturation conditions. Vitrified oocytes were able to mature and develop into embryos in 3D microcapsules (17.42 ± 11.83%) as well as in 2D microdrops (14.96 ± 8.80%), but the coculture with companion COCs in 3D resulted in similar proportions of VOs embryo development (18.39 ± 16.67%; p = 1.00), although COCs presence allowed for blastocyst formation (0.95 ± 2.52%). In conclusion, embryos until late developmental stages were obtained from cat VOs, and 3D microcapsules were comparable to 2D microdrops, but improvements in post-warming conditions are still needed.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| | - Maria Giorgia Morselli
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| | - Mariana Riboli Tavares
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil.
| | - Maricy Apparicio
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil.
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Via Celoria, 10, 20133 Milano, Italy.
| |
Collapse
|
12
|
Pereira BA, Zangeronimo MG, Castillo-Martín M, Gadani B, Chaves BR, Rodríguez-Gil JE, Bonet S, Yeste M. Supplementing Maturation Medium With Insulin Growth Factor I and Vitrification-Warming Solutions With Reduced Glutathione Enhances Survival Rates and Development Ability of in vitro Matured Vitrified-Warmed Pig Oocytes. Front Physiol 2019; 9:1894. [PMID: 30692931 PMCID: PMC6340283 DOI: 10.3389/fphys.2018.01894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
The present study sought to determine whether in vitro maturation (IVM) of pig oocytes in a medium supplemented with insulin growth factor-I (IGF-I) and subsequent vitrification with or without reduced glutathione (GSH) affect their quality and developmental competence, and the expression of genes involved in antioxidant, apoptotic and stress responses. In Experiment 1, cumulus-oocyte complexes were matured in the absence or presence of IGF-I (100 ng·mL−1) and then vitrified-warmed with or without 2 mM of GSH. Maturation rate was evaluated before vitrification, and oocyte viability, DNA fragmentation and relative transcript abundances of BCL-2-associated X protein (BAX), BCL2-like1 (BCL2L1), heat shock protein 70 (HSPA1A), glutathione peroxidase 1 (GPX1) and superoxide dismutase 1 (SOD1) genes were assessed in fresh and vitrified-warmed oocytes. In Experiment 2, fresh and vitrified-warmed oocytes were in vitro fertilized and their developmental competence determined. Whereas the addition of IGF-I to maturation medium had no effect on oocyte maturation, it caused an increase in the survival rate of vitrified-warmed oocytes. This effect was accompanied by a concomitant augment in the relative transcript abundance of HSPA1A and a decrease of BAX. Furthermore, the addition of GSH to vitrification-warming media increased survival rates at post-warming. Likewise, the action of GSH was concomitant with an increase in the relative abundance of GPX1 and a decrease of BAX transcript. Blastocyst rates of vitrified-warmed oocytes did not differ from their fresh counterparts when IGF-I and GSH were combined. In conclusion, supplementing maturation medium with 100 ng·mL−1 IGF-I and vitrification-warming solutions with 2 mM GSH improves the quality and cryotolerance of IVM pig oocytes, through a mechanism that involves BAX, GPX1 and HSPA1A expression.
Collapse
Affiliation(s)
- Barbara Azevedo Pereira
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Laboratory of Animal Physiology and Pharmacology, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Brazil
| | - Marcio Gilberto Zangeronimo
- Laboratory of Animal Physiology and Pharmacology, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Brazil
| | - Miriam Castillo-Martín
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Beatrice Gadani
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Bruna Resende Chaves
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Laboratory of Animal Physiology and Pharmacology, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Brazil
| | - Joan Enric Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Sergi Bonet
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Marc Yeste
- Unit of Cell Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
13
|
Mandawala A, Harvey S, Roy T, Fowler K. Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology 2016; 86:1637-44. [DOI: 10.1016/j.theriogenology.2016.07.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
|
14
|
Abedpour N, Rajaei F. Vitrification by Cryotop and the Maturation, Fertilization, and Developmental Rates of Mouse Oocytes. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e18172. [PMID: 26568845 PMCID: PMC4636753 DOI: 10.5812/ircmj.18172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 01/28/2015] [Accepted: 03/28/2015] [Indexed: 12/28/2022]
Abstract
Background: Oocyte cryopreservation is an important part of modern fertility treatment. The effect of vitrification on the fertilization and developmental rates of embryo is still a matter of debate. Objectives: This study aimed to investigate the effect of vitrification on the success of mouse oocyte maturation, fertilization, and preimplantation development in vitro. Materials and Methods: In this experimental study, a total of 200 germinal vesicle (GV) and 200 metaphase II (MII) oocytes were obtained from ovaries and fallopian tubes of NMRI mice, respectively and divided into two control and experimental (vitrified) groups. Oocytes in the experimental group were vitrified by Cryotop using vitrification medium (Origio, Denmark) and kept in liquid nitrogen for one month. Then, they were cultured in maturation medium for 24 hours. In vitro maturated metaphase 2 (IVM-MII) and ovulated metaphase 2 (OV-MII) oocytes were inseminated and the fertilized embryos assessed until the hatching blastocyst stage. Outcomes were assessed for statistical significance by Chi-square test using SPSS software. Results: Vitrification caused a significant reduction in the maturation rate of oocytes. Of those that matured, the fertilization rate of vitrified IVM-MII (44.1%) and OV-MII oocytes (50%) was not significantly different from each other but both were significantly lower than the control group (P < 0.05). There was no significant difference in developmental rates of both vitrified groups and the control group. Conclusions: The present study showed that vitrification using Cryotop and freezing medium can damage oocytes by reducing the maturation and fertilization rates in both developmental stages.
Collapse
Affiliation(s)
- Neda Abedpour
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran
- Fertility and Infertility Research Centre, Kosar Hospital, Qazvin University of Medical Sciences, Qazvin, IR Iran
- Corresponding Author: Farzad Rajaei, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, IR Iran. Tel: +98-2833336001, Fax: +98-2833324970, E-mail:
| |
Collapse
|
15
|
Somfai T, Men NT, Noguchi J, Kaneko H, Kashiwazaki N, Kikuchi K. Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens. J Reprod Dev 2015; 61:571-9. [PMID: 26411536 PMCID: PMC4685224 DOI: 10.1262/jrd.2015-089] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our aim was to optimize the cryoprotectant treatment for the preservation of immature porcine cumulus-oocyte
complexes (COCs) by solid surface vitrification. In each experiment, the vitrification solution consisted of
50 mg/ml polyvinyl pyrrolidone, 0.3 M of the actual sugar and in total 35% (v/v) of the actual permeating
cryoprotectant (pCPA) combination. After warming, the COCs were subjected to in vitro
maturation, fertilization and embryo culture. In Experiment 1, trehalose and sucrose were equally effective
during vitrification and warming in terms of facilitating oocyte survival and subsequent embryo development.
In Experiment 2, when equilibration was performed at 38.5 C in a total of 4% (v/v) pCPA for 15 min, the
combination of ethylene glycol and propylene glycol (EG + PG = 1:1) was superior to EG and dimethyl sulfoxide
(EG + DMSO = 1:1) in terms of oocyte survival after vitrification and the quality of resultant blastocysts. In
Experiment 3, equilibration in 4% (v/v) pCPA for 15 min before vitrification was superior to that in 15% (v/v)
CPA for 5 min for achievement of high survival rates irrespective of the pCPA combination used. In Experiment
4, when equilibration was performed in 4% EG + PG for 5 min, 15 min or 25 min, there was no difference in
oocyte survival and subsequent embryo development after vitrification and warming; however, the developmental
competence of cleaved embryos was tendentiously reduced when equilibration was performed for 25 min. In
conclusion, trehalose and sucrose were equally effective in facilitating vitrification, and the optimum pCPA
treatment was 5–15 min equilibration in 4% (v/v) of EG + PG followed by vitrification in 35% (v/v) EG +
PG.
Collapse
Affiliation(s)
- Tamás Somfai
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Rajaei F, Abedpour N, Salehnia M, Jahanihashemi H. The effect of vitrification on mouse oocyte apoptosis by cryotop method. IRANIAN BIOMEDICAL JOURNAL 2014; 17:200-5. [PMID: 23999716 DOI: 10.6091/ibj.1184.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Oocyte cryopreservation is one of the most important topics in the field of assisted reproductive technology to preserve women fertility, but relationship between cryopreservation and apoptosis is still a matter of debate. The present study was aimed to investigate the effects of vitrification on apoptosis in mouse oocytes by Cryotop method. METHOD A total of 200 germinal vesicle (GV) and 200 metaphase II (MII) oocytes were obtained from ovaries and fallopian tubes of NMRI mice, respectively and divided into control and experimental groups. Oocytes in experimental group were vitrified by Cryotop using vitrification medium and were kept in liquid nitrogen for one month. The survival rate of oocytes was evaluated after 2 hour incubation time. Then, the oocyte apoptosis was evaluated by TUNEL technique and compared with those in control group. The data was compared statistically using SPSS software and chi-square test. RESULTS The survival rates of vitrified GV (93%) and MII oocytes (88%) showed a significant decrease compared with the control group (P<0.05), but there was no significant difference in survival rate of both vitrified oocyte groups. The incidence of apoptosis in vitrified and control GV oocytes showed no significant difference (13% vs. 7%), but the rate of apoptosis in vitrified MII oocytes increased significantly not only in comparison with MII control group (25% vs. 5%) but also with vitrified GV oocytes (P<0.05). CONCLUSION The results indicate that vitrification increases apoptosis in mouse MII oocytes and apoptosis may play a role in MII oocyte injury after vitrification.
Collapse
Affiliation(s)
- Farzad Rajaei
- Cellular and Molecular Research Centre, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Neda Abedpour
- Cellular and Molecular Research Centre, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mojdeh Salehnia
- Dept. of Anatomy, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Hassan Jahanihashemi
- Cellular and Molecular Research Centre, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
17
|
Morató R, Chauvigné F, Novo S, Bonet S, Cerdà J. Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels. Mol Reprod Dev 2014; 81:450-61. [DOI: 10.1002/mrd.22310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/29/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Roser Morató
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Department of Biology; Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar; Consejo Superior de Investigaciones Científicas (CSIC); Barcelona Spain
| | - Sergi Novo
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Department of Biology; Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm); Department of Biology; Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar; Consejo Superior de Investigaciones Científicas (CSIC); Barcelona Spain
| |
Collapse
|
18
|
Lin T, Diao YF, Kang JW, Lee JE, Kim DK, Jin DI. Chromosomes in the porcine first polar body possess competence of second meiotic division within enucleated MII stage oocytes. PLoS One 2013; 8:e82766. [PMID: 24312673 PMCID: PMC3849472 DOI: 10.1371/journal.pone.0082766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022] Open
Abstract
To determine whether chromosomes in the porcine first polar body (PB1) can complete the second meiotic division and subsequently undergo normal pre-implantation embryonic development, we examined the developmental competence of PB1 chromosomes injected into enucleated MII stage oocytes by nuclear transfer method (chromosome replacement group, CR group). After parthenogenetic activation (PA) or in vitro fertilization (IVF), the cleavage rate of reconstructed oocytes in the IVF group (CR-IVF group, 36.4 ± 3.2%) and PA group (CR-PA group, 50.8 ± 4.2%) were significantly lower than that of control groups in which normal MII oocytes were subjected to IVF (MII-IVF group, 75.8 ± 1.5%) and PA (MII-PA group, 86.9 ± 3.7%). Unfertilized rates was significantly higher in the CR-IVF group (48.6 ± 3.3%) than in the MII-IVF group (13.1 ± 3.4%). The blastocyst formation rate was 8.3 ± 1.9% in the CR-PA group, whereas no blastocyst formation was observed in the CR-IVF group. To produce tetraploid parthenogenetic embryos, intact MII stage oocytes injected with PB1 chromosomes were electrically stimulated, treated with 7.5 μg/mL cytochalasin B for 3 h (MII oocyte + PB1 + CB group), and then cultured without cytochalasin B. The average cleavage rate of reconstructed oocytes was 72.5% (48 of 66), and the blastocyst formation rate was 18.7% (9 of 48). Chromosome analysis showed similar proportions of haploid and diploid cells in the control (normal MII oocytes) and CR groups after PA; overall, 23.6% of blastocysts were tetraploid in the MII oocyte + PB1 + CB group. These results demonstrate that chromosomes in PB1 can participate in normal pre-implantation embryonic development when injected into enucleated MII stage oocytes, and that tetraploid PA blastocysts are produced (although at a low proportion) when PB1 chromosomes are injected into intact MII stage oocytes.
Collapse
Affiliation(s)
- Tao Lin
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yun Fei Diao
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jung Won Kang
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Kyo Kim
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- Department of Animal Biotechnology & Environment, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Wang Y, Okitsu O, Zhao XM, Sun Y, Di W, Chian RC. The effect of minimal concentration of ethylene glycol (EG) combined with polyvinylpyrrolidone (PVP) on mouse oocyte survival and subsequent embryonic development following vitrification. J Assist Reprod Genet 2013; 31:55-63. [PMID: 24258349 DOI: 10.1007/s10815-013-0136-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Vitrification techniques employ a relatively high concentration of cryoprotectant in vitrification solutions. Exposure of oocytes to high concentrations of cryoprotectant is known to damage the oocytes via both cytotoxic and osmotic effects. Therefore, the key to successful vitrification of oocytes is to strike a balance between the usage of minimal concentration of cryoprotectant without compromising their cryoprotective actions. METHODS The minimal concentration of ethylene glycol (EG) on mouse oocyte survival and subsequent embryonic development was evaluated following vitrification-warming and parthenogenetic activation. Polyvinylpyrrolidone (PVP) combined with EG on mouse oocyte survival and subsequent embryonic development as well as morphology of the spindle and chromosome alignment were also evaluated. Vitrification system was adapted with JY Straw and the cooling rate was approximately 442-500 °C/min. In contrast, the warming rate was approximately 2,210-2,652 °C/min. RESULTS Survival rate of oocytes increased significantly when 15 % EG was combined with 2 % PVP in vitrification solution (VS). The effect of combination of EG and PVP was not significant when the concentration of EG was 20 % and higher. Although there were no significant differences in embryonic development, the percentage of abnormal spindle and chromosome alignment was significantly higher in the oocytes without 2 % PVP in VS. CONCLUSIONS Our data provide a proof of principle for oocyte vitrification that may not require a high concentration of cryoprotectant. There are synergic effects of EG combined with PVP for oocyte vitrification, which may provide important information to the field in developing less cytotoxic VS.
Collapse
Affiliation(s)
- Yao Wang
- Center for Reproductive Medicine, Key Laboratory for Assisted Reproduction and Genetics, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Effects of resveratrol on vitrified porcine oocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:920257. [PMID: 24223236 PMCID: PMC3816072 DOI: 10.1155/2013/920257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/31/2013] [Indexed: 01/29/2023]
Abstract
Vitrified MII porcine oocytes are characterized by reduced developmental competence, associated with the activation of the apoptotic pathway. Resveratrol (R), a polyphenolic compound present in several vegetal sources, has been reported to exert, among all its other biological effects, an antiapoptotic one. The aim of this study was to determine the effects of R (2 µM) on the apoptotic status of porcine oocytes vitrified by Cryotop method, evaluating phosphatidylserine (PS) exteriorization and caspases activation. R was added during IVM (A); 2 h postwarming incubation (B); vitrification/warming and 2 h postwarming incubation (C); all previous phases (D). Data on PS exteriorization showed, in each treated group, a significantly higher (P < 0.05) percentage of live nonapoptotic oocytes as compared with CTR; moreover, the percentage of live apoptotic oocytes was significantly (P < 0.05) lower in all R-treated groups relative to CTR. The results on caspase activation showed a tendency to an increase of viable oocytes with inactive caspases in B, C, and D, while a significant (P < 0.05) increase in A compared to CTR was recorded. These data demonstrate that R supplementation in various phases of IVM and vitrification/warming procedure can modulate the apoptotic process, improving the resistance of porcine oocytes to cryopreservation-induced damage.
Collapse
|
21
|
Jang W, Lee S, Choi H, Lim J, Heo Y, Cui X, Kim N. Vitrification of immaturemouse oocytes by the modified‐cut standard straw method. Cell Biol Int 2013; 38:164-71. [DOI: 10.1002/cbin.10163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Woo‐In Jang
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbuk361‐763South Korea
| | - Seung‐Eun Lee
- Stem Cell Research CenterJeju National UniversityJejuKorea
| | - Hyun‐Yong Choi
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbuk361‐763South Korea
| | - Joon‐Gyo Lim
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbuk361‐763South Korea
| | - Young‐Tae Heo
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbuk361‐763South Korea
| | - Xiang‐Shun Cui
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbuk361‐763South Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National UniversityCheongjuChungbuk361‐763South Korea
| |
Collapse
|
22
|
Wu G, Jia B, Mo X, Liu C, Fu X, Zhu S, Hou Y. Nuclear maturation and embryo development of porcine oocytes vitrified by cryotop: effect of different stages of in vitro maturation. Cryobiology 2013; 67:95-101. [PMID: 23742797 DOI: 10.1016/j.cryobiol.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/16/2022]
Abstract
The present study was designed to evaluate the viability, meiotic competence and subsequent development of porcine oocytes vitrified using the cryotop method at different stages of in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were cultured in IVM medium supplemented with 1mM dibutyryl cAMP (dbcAMP) for 22 h and then for an additional 22 h without dbcAMP in the medium. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), anaphase I/telophase I (AI/TI) and metaphase II (MII) were found to occur predominantly at 0-22, 26, 32, 38 and 44 h of IVM, respectively. Oocytes were exposed to cryoprotectant (CPA) or vitrified after different durations of IVM (0, 22, 26, 32, 38 and 44 h). After CPA exposure and vitrification, surviving oocytes that were treated before completion of the 44 h maturation period were placed back into IVM medium for the remaining maturation period, and matured oocytes were incubated for 2h. CPA treatment did not affect the viability of oocytes matured for 26, 32, 38 or 44 h, but significantly decreased survival rate of oocytes matured for 0 or 22 h. CPA treatment had no effect on the ability of surviving oocytes to develop to the MII stage regardless of the stage during IVM; however, blastocyst formation following PA was severely lower (P<0.05) than that in the control. At 2h post-warming, the survival rates of oocytes vitrified at 26, 32, 38 and 44 h of IVM were similar but were higher (P<0.05) than those of oocytes vitrified at 0 or 22 h of IVM. The MII rates of surviving oocytes vitrified at 0 and 38 h of IVM did not differ from the control and were higher (P<0.05) than those of oocytes vitrified at 22, 26 or 32 h of IVM. After parthenogenetic activation (PA), both cleavage and blastocyst rates of vitrified oocytes matured for 22, 26, 32, 38 and 44 h did not differ, but all were lower (P<0.05) than those matured 0 h. In conclusion, our data indicate that survival, nuclear maturation and subsequent development of porcine oocytes may be affected by their stage of maturation at the time of vitrification; a higher percentage of blastocyst formation can be obtained from GV oocytes vitrified before the onset of maturation.
Collapse
Affiliation(s)
- Guoquan Wu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Srirattana K, Sripunya N, Sangmalee A, Imsoonthornruksa S, Liang Y, Ketudat-Cairns M, Parnpai R. Developmental potential of vitrified goat oocytes following somatic cell nuclear transfer and parthenogenetic activation. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Seet VYK, Al-Samerria S, Wong J, Stanger J, Yovich JL, Almahbobi G. Optimising vitrification of human oocytes using multiple cryoprotectants and morphological and functional assessment. Reprod Fertil Dev 2013; 25:918-26. [DOI: 10.1071/rd12136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/01/2012] [Indexed: 11/23/2022] Open
Abstract
Oocyte vitrification is a clinical practice that allows preservation of fertility potential in women. Vitrification involves quick cooling using high concentrations of cryoprotectants to minimise freezing injuries. However, high concentrations of cryoprotectants have detrimental effects on oocyte quality and eventually the offspring. In addition, current assessment of oocyte quality after vitrification is commonly based only on the morphological appearance of the oocyte, raising concerns regarding its efficiency. Using both morphological and functional assessments, the present study investigated whether combinations of cryoprotectants at lower individual concentrations result in better cryosurvival rates than single cryoprotectants at higher concentrations. Surplus oocytes from IVF patients were vitrified within 24 h after retrieval using the Cryotop method with several cryoprotectants, either individually or in combination. The morphological and functional quality of the vitrified oocytes was investigated using light microscopy and computer-based quantification of mitochondrial integrity, respectively. Oocyte quality was significantly higher using a combination of cryoprotectants than vitrification with individual cryoprotectants. In addition, the quality of vitrified oocyte varied depending on the cryoprotectants and type of combination used. The results of the present study indicate that observations based purely on the morphological appearance of the oocyte to assess the cryosurvival rate are insufficient and sometimes misleading. The outcome will have a significant implication in the area of human oocyte cryopreservation as an important approach for fertility preservation.
Collapse
|
25
|
Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim Reprod Sci 2012; 135:68-74. [DOI: 10.1016/j.anireprosci.2012.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 07/30/2012] [Accepted: 08/09/2012] [Indexed: 12/29/2022]
|
26
|
A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep. Theriogenology 2012; 78:1709-19. [DOI: 10.1016/j.theriogenology.2012.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/21/2022]
|
27
|
Spinaci M, Vallorani C, Bucci D, Tamanini C, Porcu E, Galeati G. Vitrification of pig oocytes induces changes in histone H4 acetylation and histone H3 lysine 9 methylation (H3K9). Vet Res Commun 2012; 36:165-71. [DOI: 10.1007/s11259-012-9527-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 11/30/2022]
|
28
|
SOMFAI T, KIKUCHI K, NAGAI T. Factors Affecting Cryopreservation of Porcine Oocytes. J Reprod Dev 2012; 58:17-24. [DOI: 10.1262/jrd.11-140n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tamás SOMFAI
- National Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Kazuhiro KIKUCHI
- National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Takashi NAGAI
- National Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| |
Collapse
|