1
|
Castro B, Candelaria JI, Austin MM, Shuster CB, Gifford CA, Denicol AC, Hernandez Gifford JA. Low-dose lipopolysaccharide exposure during oocyte maturation disrupts early bovine embryonic development. Theriogenology 2024; 214:57-65. [PMID: 37857151 PMCID: PMC10841481 DOI: 10.1016/j.theriogenology.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Gram-negative bacteria release of lipopolysaccharide (LPS) endotoxin elicits robust immune responses capable of disrupting normal ovarian function contributing to female infertility. However, effects of subclinical or non-detectable infections on oocyte competence and subsequent embryo development remain to be fully elucidated. The aim of this study was to investigate the effects of exposing bovine oocytes to low LPS doses on oocyte and embryo competence. Bovine oocytes were collected from slaughterhouse-derived ovaries and matured with vehicle-control or increasing doses of LPS (0.01, 0.1, and 1 μg/mL) for 21 h. Oocytes (n = 252) were evaluated for nuclear maturation. A set of embryos from LPS-matured oocytes (n = 300) were cultured for 8 d to evaluate day 3 cleavage rates and day 8 blastocyst rates along with blastocyst cell counts. A subset of oocytes (n = 153) was fertilized and cultured for time-lapse image capture and analysis of embryo development. Results demonstrate no significant treatment differences among treatment groups in percent of oocytes at germinal vesicle (GV; P = 0.90), germinal vesicle breakdown (GVBD; P = 0.13), meiosis I (MI; P = 0.26), or metaphase II (MII; P = 0.44). Likewise, treatment differences were not observed in cleavage rates (P = 0.97), or blastocyst rates (P = 0.88) evaluated via traditional microscopy. Treatment with LPS did not affect total blastocyst cell count (P = 0.68), as indicated by trophectoderm (P = 0.83), and inner cell mass (P = 0.21) cell counts. Time-lapse embryo evaluation demonstrated no differences among control or LPS matured oocytes in number of zygotes that did not cleave after fertilization (P = 0.84), or those that cleaved but arrested at the 2-cell stage (P = 0.50), 4-cell (P = 0.76), prior to morula (P = 0.76). However, embryos derived from oocytes challenged with 0.1 μg/mL LPS tended to have reduced development to the morula stage compared with vehicle-treated controls (P = 0.06). Additionally, the percentage of blastocysts derived from oocytes matured in 0.01 μg/mL LPS tended to decrease compared to vehicle-treated controls (11.38 and 25.45 %, respectively; P = 0.09). Similarly, the proportion of oocytes that developed to the blastocyst stage was greater in vehicle-treated controls (25.45 %) compared with embryos derived from oocytes matured in 0.1 and 1 μg/mL (5.92 and 6.55 %, respectively; P = 0.03) LPS. These data suggest LPS-matured oocytes that subsequently underwent in vitro fertilization, experienced decreased competence to develop to the blastocyst stage.
Collapse
Affiliation(s)
- B Castro
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - J I Candelaria
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - M M Austin
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - C B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - C A Gifford
- Extension Animal Sciences and Natural Resources, New Mexico State University, Las Cruces, NM, 88003, USA
| | - A C Denicol
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - J A Hernandez Gifford
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
2
|
Cabeza JP, Cámera J, Briski O, Felipe MY, Salamone DF, Gambini A. Preimplantation Developmental Competence of Bovine and Porcine Oocytes Activated by Zinc Chelation. Animals (Basel) 2022; 12:ani12243560. [PMID: 36552480 PMCID: PMC9774810 DOI: 10.3390/ani12243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
After sperm-oocyte fusion, intracytoplasmic rises of calcium (Ca) induce the release of zinc (Zn) out of the oocyte (Zn sparks). Both phenomena are known to play an essential role in the oocyte activation process. Our work aimed to explore different protocols for activating bovine and porcine oocytes using the novel zinc chelator 1,10-phenanthroline (PHEN) and to compare developmental rates and quality to bovine IVF and parthenogenetic ionomycin-induced embryos in both species. Different incubation conditions for the zinc chelator were tested, including its combination with ionomycin. Embryo quality was assessed by immunofluorescence of SOX2, SOX17, OCT4, and CDX2 and total cell number at the blastocyst stage. Even though blastocyst development was achieved using a zinc chelator in bovine, bypassing calcium oscillations, developmental rates, and blastocyst quality were compromised compared to embryos generated with sperm-induced or ionomycin calcium rise. On the contrary, zinc chelation is sufficient to trigger oocyte activation in porcine. Additionally, we determined the optimal exposure to PHEN for this species. Zinc chelation and artificial induction of calcium rise combined did not improve developmental competence. Our results contribute to understanding the role of zinc during oocyte activation and preimplantation embryo development across different mammalian species.
Collapse
Affiliation(s)
- Juan P. Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan Cámera
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Minerva Yauri Felipe
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F. Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia
- Correspondence:
| |
Collapse
|
3
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
6
|
Paramio MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology 2016; 86:152-9. [DOI: 10.1016/j.theriogenology.2016.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
|
7
|
Plasma membrane and acrosome loss before ICSI is required for sheep embryonic development. J Assist Reprod Genet 2016; 33:757-63. [PMID: 27059776 DOI: 10.1007/s10815-016-0709-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study aims to determine if the integrity of the sperm plasma membrane and acrosome vesicle could be limiting factors in sheep intracytoplasmic sperm injection (ICSI). METHODS Prior to in vitro fertilization (IVF) or ICSI, the oocytes were subjected to in vitro maturation (IVM) for 24 h. First, to evaluate the need of artificial activation for ovine ICSI, 226 oocytes were injected with intact spermatozoa (IS), from which 125 were activated by incubation in ionomycin and 101 were cultured without activation. Next, spermatozoa were mechanically (by piezo-electrical pulses) and/or chemically (by ionomycin/Triton X-100) treated to break membranes and acrosomes and were injected into oocytes, grouped as follows: (i) piezo-pulsed spermatozoa (PPS), (ii) PPS pre-treated with ionomycin (PPS-I), (iii) PPS pre-treated with Triton X-100 (PPS-T), and (iv) intact and untreated spermatozoa as a control (CTR-IS). RESULTS No differences were observed in the zygote/cleavage/blastocyst rate between chemically activated and non-activated oocytes (50 vs. 45 %, 11.6 vs. 10.1 %; 1.8 vs. 1.1 %, respectively), after ICSI with CTR-IS. Injection of PPS compared to CTR-IS increased the proportion of zygotes and blastocysts (84.6 vs. 45 %, p < 0.01; 15.5 vs. 1.1 %, p < 0.0001, respectively). Moreover, the percentage of PPS-derived blastocysts was not significantly different from that obtained by conventional IVF (15.5 vs. 20.2 %). The ICSI blastocysts' development was also improved with PPS pre-treated with ionomycin (15.6 %), but was completely impeded with PPS pre-treated with Triton X-100 (0 %). CONCLUSION Our findings confirm that ICSI with spermatozoa whose plasma membrane and acrosome have been mechanically damaged substantially improves embryonic development until the blastocyst stage.
Collapse
|
8
|
Vascular alterations underlie developmental problems manifested in cloned cattle before or after birth. PLoS One 2015; 10:e0106663. [PMID: 25584533 PMCID: PMC4293144 DOI: 10.1371/journal.pone.0106663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/01/2014] [Indexed: 12/16/2022] Open
Abstract
Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications).
Collapse
|