1
|
Ávila G, Bonnet M, Viala D, Dejean S, Agazzi A, Lecchi C, Ceciliani F. Porcine milk small extracellular vesicles modulate peripheral blood mononuclear cell proteome in vitro. Sci Rep 2025; 15:8069. [PMID: 40055486 PMCID: PMC11889182 DOI: 10.1038/s41598-025-92550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Small extracellular vesicles (EVs) are a subtype of nano-sized extracellular vesicles that mediate intercellular communication. EVs can be found in different body fluids, including milk. Monocytes internalize porcine milk EVs and modulate immune functions in vitro by decreasing their phagocytosis and chemotaxis while increasing their oxidative burst. This study aimed to assess the impact of porcine milk EVs on the porcine peripheral blood mononuclear cells (PBMC) proteome. Porcine PBMC were incubated with porcine milk EVs or medium as a control. Extracted proteins were then analyzed using nano-LC-MS/MS. A total of 1584 proteins were identified. The supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified discriminant proteins (DP) that contributed to a clear separation between the porcine milk EVs treated cells and control groups. A total of 384 DP from both components were selected. Gene Ontology (GO) enrichment analysis with ProteINSIDE provided the evidence that the DP with a higher abundance in porcine milk EVs, like TLR2, APOE, CD36, MFGE8, were mainly involved in innate immunity and the process of EVs uptake processes. These results provide a proteomics background to the immunomodulatory activity of porcine milk EVs and to the potential mechanisms used by immune cells to internalize them.
Collapse
Affiliation(s)
- Gabriela Ávila
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Muriel Bonnet
- INRAE, University of Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, University of Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
- INRAE, Metabolomic and Proteomic Exploration Facility, Proteomic Component, (PFEMcp), 63122, Saint-Genès-Champanelle, France
| | - Sebastian Dejean
- Institute of Mathematics of Toulouse, University of Toulouse, CNRS, UPS, UMR 5219, 31062, Toulouse, France
| | - Alessandro Agazzi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Cristina Lecchi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
2
|
DAS MONTI, DE ANKAN, BEHERA PARTHASARATHI, ALI MOHAMMADAYUB, SUBUDHI PRASANTKUMAR, KALITA GIRIN, KAYINA ASHULIKHOZHIIO, GALI JAGANMOHANARAO. Porcine salivary proteome analysis identifies potential early pregnancy-specific protein biomarkers. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i2.119316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Early diagnosis of pregnancy is of utmost importance to optimize profit in pig husbandry. Identifying candidate protein biomarkers for early diagnosis of pregnancy in a non-invasive sample such as saliva may produce a colossallead to accomplish the purpose. Therefore, in this study, comparative salivary proteome profile of day 12 of gestation, representing elongation of blastocysts stage and non-pregnant sows was explored by label-free quantitation (LFQ) based mass spectrometry approach to identify early pregnancy biomarkers. A total of 115 proteins were identified as differentially expressed proteins (DEPs) with significant difference between non-pregnant and early pregnancy groups. Among the DEPs, majority of the proteins (82 out of 115 DEPs) were found to be down-regulated in early pregnancy group (fold change >2) compared to non-pregnant control. Functional classification and pathway analysis of the DEPs revealed involvement of most of the proteins in integrin signalling pathways, blood coagulation, carbohydrate metabolism, oxidative stress response and regulation of protein folding. Few DEPs with higher fold change during early pregnancy such as thioredoxin, heat shock 70 kDa protein 1A, alpha 1-S haptoglobin, and glutathione S-transferase pi 1 may have potential as biomarkers for early pregnancy diagnosis in pigs based on their recognized role in different pregnancy related activities. Overall, our results provide a set of salivary proteins which can be used as potential biomarkers for early pregnancy diagnosis after large scale validation.
Collapse
|
3
|
Valent D, Arroyo L, Peña R, Yu K, Carreras R, Mainau E, Velarde A, Bassols A. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship. PLoS One 2017; 12:e0176928. [PMID: 28475627 PMCID: PMC5419571 DOI: 10.1371/journal.pone.0176928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Eva Mainau
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
4
|
The Application of Human iPSCs in Neurological Diseases: From Bench to Bedside. Stem Cells Int 2016; 2016:6484713. [PMID: 26880979 PMCID: PMC4736583 DOI: 10.1155/2016/6484713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
In principle, induced pluripotent stem cells (iPSCs) are generated from somatic cells by reprogramming and gaining the capacity to self-renew indefinitely as well as the ability to differentiate into cells of different lineages. Human iPSCs have absolute advantages over human embryonic stem cells (ESCs) and animal models in disease modeling, drug screening, and cell replacement therapy. Since Takahashi and Yamanaka first described in 2007 that iPSCs can be generated from human adult somatic cells by retroviral transduction of the four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, disease specific iPSC lines have sprung up worldwide like bamboo shoots after a spring rain, making iPSC one of the hottest and fastest moving topics in modern science. The craze for iPSCs has spread throughout main branches of clinical medicine, covering neurology, hematology, cardiology, endocrinology, hepatology, ophthalmology, and so on. Here in this paper, we will focus on the clinical application of human iPSCs in disease modeling, drug screening, and cell replacement therapy for neurological diseases.
Collapse
|
5
|
Zhu J, Zeng X, Peng Q, Zeng S, Zhao H, Shen H, Qiao S. Maternal N-Carbamylglutamate Supplementation during Early Pregnancy Enhances Embryonic Survival and Development through Modulation of the Endometrial Proteome in Gilts. J Nutr 2015; 145:2212-20. [PMID: 26290006 DOI: 10.3945/jn.115.216333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/22/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Early pregnancy loss is a major concern in humans and animals. N-carbamylglutamate (NCG) has been found to enhance embryonic survival during early pregnancy in rats. However, little is known about the key factors in the endometrium involved in the improvement of embryonic implantation and development induced by maternal NCG supplementation. OBJECTIVES Our objectives were to investigate whether NCG supplementation during early gestation enhanced embryonic survival and development in gilts and to uncover the related factors using the approach of endometrium proteome analysis with isobaric tags for relative and absolute quantification (iTRAQ). METHODS Uteruses and embryos/fetuses were obtained on days 14 and 28 of gestation from gilts fed a basal diet that was or was not supplemented with 0.05% NCG. The iTRAQ-based quantitative proteomics approach was performed to explore the endometrium proteome altered by NCG supplementation. RESULTS Maternal NCG supplementation significantly increased the number of total fetuses and live fetuses on day 28 of gestation by 1.32 and 1.29, respectively (P < 0.05), with a significant decrease in embryonic mortality (P < 0.05). iTRAQ results indicated that a total of 59 proteins showed at least 2-fold differences (P < 0.05), including 52 proteins that were present at higher abundance and 7 proteins present at lower abundance in NCG-supplemented gilts. The differentially expressed proteins primarily are involved in cell adhesion, energy metabolism, lipid metabolism, protein metabolism, antioxidative stress, and immune response. On day 14 of gestation, several proteins closely related to embryonic implantation and development, such as integrin-αv, integrin-β3, talin, and endothelial nitric oxide synthase, were upregulated (3.7-, 4.1-, 2.4-, and 5.4-fold increases, respectively) by NCG supplementation. CONCLUSION To our knowledge, our results provide the first evidence that altered abundance of the endometrial proteome induced by NCG supplementation is highly associated with the improvement of embryonic survival and development in gilts.
Collapse
Affiliation(s)
- Jinlong Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| | - Qian Peng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| | - Shenming Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China; and
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, China
| | - Hexiao Shen
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, and
| |
Collapse
|
6
|
Kim KB, Kim DW, Park JW, Jeon YJ, Kim D, Rhee S, Chae JI, Seo SB. Inhibition of Ku70 acetylation by INHAT subunit SET/TAF-Iβ regulates Ku70-mediated DNA damage response. Cell Mol Life Sci 2014; 71:2731-45. [PMID: 24305947 PMCID: PMC11113754 DOI: 10.1007/s00018-013-1525-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/28/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iβ, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iβ interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iβ and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iβ inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iβ expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iβ interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iβ dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Dong-Wook Kim
- Department of Oral Pharmacology, School of Dentistry, Brain Korea 21 PLUS Project, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Present Address: Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA USA
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry, Brain Korea 21 PLUS Project, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry, Brain Korea 21 PLUS Project, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| |
Collapse
|
7
|
Degroote RL, Hauck SM, Amann B, Hirmer S, Ueffing M, Deeg CA. Unraveling the equine lymphocyte proteome: differential septin 7 expression associates with immune cells in equine recurrent uveitis. PLoS One 2014; 9:e91684. [PMID: 24614191 PMCID: PMC3951111 DOI: 10.1371/journal.pone.0091684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate - polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.
Collapse
Affiliation(s)
- Roxane L. Degroote
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Sieglinde Hirmer
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Marius Ueffing
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
8
|
Zheng J, Liu L, Wang J, Jin Q. Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genomics 2013; 14:777. [PMID: 24215720 PMCID: PMC3832905 DOI: 10.1186/1471-2164-14-777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/28/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progress in the fields of protein separation and identification technologies has accelerated research into biofluids proteomics for protein biomarker discovery. Urine has become an ideal and rich source of biomarkers in clinical proteomics. Here we performed a proteomic analysis of urine samples from pregnant and non-pregnant patients using gel electrophoresis and high-resolution mass spectrometry. Furthermore, we also apply a non-prefractionation quantitative phosphoproteomic approach using mTRAQ labeling to evaluate the expression of specific phosphoproteins during pregnancy comparison with non-pregnancy. RESULTS In total, 2579 proteins (10429 unique peptides) were identified, including 1408 from the urine of pregnant volunteers and 1985 from the urine of non-pregnant volunteers. One thousand and twenty-three proteins were not reported in previous studies at the proteome level and were unique to our study. Furthermore, we obtained 237 phosphopeptides, representing 105 phosphoproteins. Among these phosphoproteins, 16 of them were found to be significantly differentially expressed, of which 14 were up-regulated and two were down-regulated in urine samples from women just before vaginal delivery. CONCLUSION Taken together, these results offer a comprehensive urinary proteomic profile of healthy women during before and after vaginal delivery and novel information on the phosphoproteins that are differentially regulated during the maintenance of normal pregnancy. Our results may provide a better understanding of the mechanisms of pregnancy maintenance, potentially leading to the development of biomarker-based sensitive assays for understanding pregnancy.
Collapse
Affiliation(s)
| | | | | | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No,6, Rongjing East Street, BDA, Beijing 100176, China.
| |
Collapse
|