1
|
Dehghan Z, Darya G, Mehdinejadiani S, Derakhshanfar A. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review. Anim Genet 2024; 55:328-343. [PMID: 38361185 DOI: 10.1111/age.13404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Transgenic (Tg) animal technology is one of the growing areas in biology. Various Tg technologies, each with its own advantages and disadvantages, are available for generating Tg animals. These include zygote microinjection, electroporation, viral infection, embryonic stem cell or spermatogonial stem cell-mediated production of Tg animals, sperm-mediated gene transfer (SMGT), and testis-mediated gene transfer (TMGT). However, there are currently no comprehensive studies comparing SMGT and TMGT methods, selecting appropriate gene delivery carriers (such as nanoparticles and liposomes), and determining the optimal route for gene delivery (SMGT and TMGT) for producing Tg animal. Here we aim to provide a comprehensive assessment comparing SMGT and TMGT methods, and to introduce the best carriers and gene transfer methods to sperm and testis to generate Tg animals in different species. From 2010 to 2022, 47 studies on SMGT and 25 studies on TMGT have been conducted. Mice and rats were the most commonly used species in SMGT and TMGT. Regarding the SMGT approach, nanoparticles, streptolysin-O, and virus packaging were found to be the best gene transfer methods for generating Tg mice. In the TMGT method, the best gene transfer methods for generating Tg mice and rats were virus packaging, dimethyl sulfoxide, electroporation, and liposome. Our study has shown that the efficiency of producing Tg animals varies depending on the species, gene carrier, and method of gene transfer.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
4
|
Rahimi M, Rahimi S, Sharafi M, Shahverdi A, Grimes JL. The effect of methyl-beta-cyclodextrin on DNA absorption and quality of posttransfected sperm. Poult Sci 2021; 100:101058. [PMID: 33743498 PMCID: PMC8010517 DOI: 10.1016/j.psj.2021.101058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sperm can be selected as a natural vector for the production of transgenic animals. Methyl-beta-cyclodextrin (MBCD) removes cholesterol from the phospholipid membrane of sperm and improves the efficiency of DNA uptake by sperm. In experiment 1, fresh sperm was treated with various concentrations of MBCD. The direct effects of MBCD on sperm parameters were monitored. In experiment 2, different concentrations of MBCD (0, 1, 2, and 4 mmol) were assessed for the transfection of genetically exogenous construction to rooster sperm. Washed semen was divided into 5 equal groups for the incubation and transfection with a pcDNA3.1+/hG-CSF vector (exogenous DNA) as follows; Treatment I-Control (washed semen without DNA); Treatment II-Control (washed semen with DNA); Treatment III-(washed semen incubated with DNA and 1 mmol MBCD); Treatment IV-(washed semen incubated with DNA and 2 mmol MBCD); and Treatment V-(washed semen incubated with DNA and 4 mmol MBCD). We demonstrated that rooster spermatozoa spontaneously can uptake exogenous DNA; this was assessed using exogenous DNA amplification (sperm genomic DNA used as a template for PCR reaction) after DNase I treatment. In addition, total motility (TM), progressive motility (PM), velocity parameters [curvilinear velocity (VCL), straight linear velocity (VSL), sperm track straightness (STR), linearity (LIN)], membrane integrity (MI), and membrane functionality were posttransfectionally evaluated. The concentrations of 1 and 2 mmol MBCD significantly (P < 0.05) improved the motion characteristics and membrane integrity of fresh sperm. The presence of hG-CSF in rooster sperm was detected by PCR and based on sperm analyses MBCD (1 mmol) improved the percentage of motility (98.9 ± 0.81), membrane functionality (64 ± 1.64), and MI (76.2 ± 1.65) after transfection when compared with the other groups (P < 0.05). For the production of transgenic chicken, hens were inseminated (AI) by transfected sperm treated with 1 and 0 mmol MBCD. A PCR analysis of the blood samples and dead embryo tissues of chicks did not reveal the transgene integration.
Collapse
Affiliation(s)
- Mahin Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 1411713116
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 1411713116
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 1411713116
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - J L Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, 27695-7608 USA.
| |
Collapse
|
5
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
6
|
Choi YH, Gibbons JR, Canesin HS, Hinrichs K. Effect of medium variations (zinc supplementation during oocyte maturation, perifertilization pH, and embryo culture protein source) on equine embryo development after intracytoplasmic sperm injection. Theriogenology 2016; 86:1782-8. [DOI: 10.1016/j.theriogenology.2016.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022]
|
7
|
Zaniboni A, Spinaci M, Zannoni A, Bernardini C, Forni M, Bacci ML. X and Y chromosome-bearing spermatozoa are equally able to uptake and internalize exogenous DNA by sperm-mediated gene transfer in swine. Res Vet Sci 2016; 104:1-3. [PMID: 26850529 DOI: 10.1016/j.rvsc.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/27/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Since proteomic differences between male X/Y chromosome-bearing gametes have recently been described, a question has been raised: could these differences be responsible for different behavior between X and Y chromosome-bearing spermatozoa during the binding and internalization of exogenous DNA in the swine species? In order to investigate this hypothesis, our group studied the process of the uptake and internalization of exogenous DNA in X and Y chromosome-bearing sperm sub-populations. No significant differences were found between sperm types in both the uptake and internalization of exogenous DNA. The quantity of internalized exogenous DNA was significantly lower than that of the uptaken DNA. In conclusion, our results showed that X and Y chromosomes-bearing spermatozoa have the same binding capacity and internalization of DNA, and the proteomic differences between them do not seem to interfere with these complex processes.
Collapse
Affiliation(s)
- Andrea Zaniboni
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy.
| |
Collapse
|
8
|
Martino NA, Dell’Aquila ME, Filioli Uranio M, Rutigliano L, Nicassio M, Lacalandra GM, Hinrichs K. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential. Reprod Biol Endocrinol 2014; 12:99. [PMID: 25306508 PMCID: PMC4209075 DOI: 10.1186/1477-7827-12-99] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/05/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. METHODS Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. RESULTS EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression of mitochondrial distribution pattern and there were no significant differences in oocyte energy/redox parameters between these oocytes and controls. CONCLUSIONS Mitochondrial distribution in equine GV-stage oocytes is correlated with chromatin configuration within the GV. Progression of chromatin configuration and mitochondrial status during holding are dependent on temperature. EH holding at 25°C maintains meiotic arrest, viability and mitochondrial potential of equine oocytes. This is the first report on the effects of EH treatment on oocyte mitochondrial energy/redox potential.
Collapse
Affiliation(s)
- Nicola A Martino
- Veterinary Clinics and Animal Productions Unit–Dipartimento dell’Emergenza e Trapianti D’Organo (DETO), Università di Bari Aldo Moro, Str. Prov. Casamassima Km 3°, Valenzano, 70010 Bari Italy
| | - Maria E Dell’Aquila
- Veterinary Clinics and Animal Productions Unit–Dipartimento dell’Emergenza e Trapianti D’Organo (DETO), Università di Bari Aldo Moro, Str. Prov. Casamassima Km 3°, Valenzano, 70010 Bari Italy
| | - Manuel Filioli Uranio
- Veterinary Clinics and Animal Productions Unit–Dipartimento dell’Emergenza e Trapianti D’Organo (DETO), Università di Bari Aldo Moro, Str. Prov. Casamassima Km 3°, Valenzano, 70010 Bari Italy
| | - Lucia Rutigliano
- Veterinary Clinics and Animal Productions Unit–Dipartimento dell’Emergenza e Trapianti D’Organo (DETO), Università di Bari Aldo Moro, Str. Prov. Casamassima Km 3°, Valenzano, 70010 Bari Italy
| | - Michele Nicassio
- Veterinary Clinics and Animal Productions Unit–Dipartimento dell’Emergenza e Trapianti D’Organo (DETO), Università di Bari Aldo Moro, Str. Prov. Casamassima Km 3°, Valenzano, 70010 Bari Italy
| | - Giovanni M Lacalandra
- Veterinary Clinics and Animal Productions Unit–Dipartimento dell’Emergenza e Trapianti D’Organo (DETO), Università di Bari Aldo Moro, Str. Prov. Casamassima Km 3°, Valenzano, 70010 Bari Italy
| | - Katrin Hinrichs
- Departments of Veterinary Physiology & Pharmacology and Large Animal Clinical Sciences, TAMU 4466, Texas A&M University, College Station, TX 77843-4466 USA
| |
Collapse
|
9
|
Affiliation(s)
- Heriberto Rodríguez-Martínez
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Fernando Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| |
Collapse
|