1
|
AOP key event relationship report: Linking decreased androgen receptor activation with decreased granulosa cell proliferation of gonadotropin-independent follicles. Reprod Toxicol 2022; 112:136-147. [PMID: 35868514 DOI: 10.1016/j.reprotox.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023]
Abstract
We recently proposed to formally recognize Key Event Relationships (KERs) as building blocks of Adverse Outcome Pathways (AOPs) that can be independently developed and peer-reviewed. Here, we follow this approach and provide an independent KER from AOP345, which describes androgen receptor (AR) antagonism leading to decreased female fertility. This KER connects AR antagonism to reduced granulosa cell proliferation of gonadotropin-independent follicles (KER2273). We have developed both the KER and the two adjacent Key Events (KEs). A systematic approach was used to ensure that all relevant supporting evidence for KER2273 was retrieved. Supporting evidence for the KER highlights the importance of AR action during the early stages of follicular development. Both biological plausibility and empirical evidence are presented, with the latter also assessed for quality. We believe that tackling isolated KERs instead of whole AOPs will accelerate the AOP development. Faster AOP development will lead to the development of simple test methods that will aid screening of chemicals, endocrine disruptor identification, risk assessment, and subsequent regulation.
Collapse
|
2
|
Zhang Y, Gong S, Su Y, Yao M, Liu X, Gong Z, Sui H, Luo M. Follicular development in livestock: Influencing factors and underlying mechanisms. Anim Sci J 2021; 92:e13657. [PMID: 34796578 DOI: 10.1111/asj.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China.,Jiaxiang County Animal Husbandry and Veterinary Bureau, Jining, China
| | - Shuai Gong
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Association of Polymorphisms in Candidate Genes with the Litter Size in Two Sheep Breeds. Animals (Basel) 2019; 9:ani9110958. [PMID: 31726757 PMCID: PMC6912326 DOI: 10.3390/ani9110958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Hu sheep and Small-tailed Han sheep are the most widely raised and most famous maternal sheep breeds in China, which are known for precocious puberty, perennial oestrus and high fecundity (1-6 lambs each parity). Therefore, it is crucial to increase litter size of these two breeds for intensive sheep industry. The objective of this study was to identify potential genetic markers linked with sheep litter size located at ten genes. This study collected blood sample of 537 Hu sheep and 420 Small-tailed Han sheep with litter size of first parity. The average litter sizes in Hu sheep and Small-tailed Han sheep were 2.21 and 1.93. DNA-pooling sequencing method was used for detecting the potential single nucleotide polymorphisms (SNPs) in ten genes related to follicle development and female reproduction. SNPscan® was used for individually genotyping. As a result, a total of 78 putative SNPs in nine out of ten candidate genes (except NOG) were identified. In total, 50 SNPs were successfully genotyped in Hu sheep and Small-tailed Han sheep. After quality control, a total of 42 SNPs in Hu sheep and 44 SNPs in Small-tailed Han sheep were finally used for further analysis. Association analysis revealed that nine SNPs within six genes (KIT: g.70199073A>G, KITLG: g.124520653G>C, ADAMTS1: g.127753565T>C, ADAMTS1: g.127754640G>T, NCOA1: g.31928165C>T, NCOA1: g.32140565G>A, LIFR: g.35862868C>T, LIFR: g.35862947G>T and NGF: g.91795933T>C) were significantly associated with litter size in Hu sheep or Small-tailed Han sheep. A combined haplotypes analysis of the two loci (LIFR: g.35862868C>T and LIFR: g.35862947G>T) revealed that H2H3 (CTTT) combined haplotypes had the largest litter size than the rest combined haplotypes and more than those with either mutation alone in Small-tailed Han sheep. Taken together, our study suggests that nine significant SNPs in six genes can be served as useful genetic markers for MAS in sheep.
Collapse
|
5
|
Review: Understanding the role of androgens and placental AR variants: Insight into steroid-dependent fetal-placental growth and development. Placenta 2019; 84:63-68. [DOI: 10.1016/j.placenta.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
|
6
|
Decreased levels of H3K9ac and H3K27ac in the promotor region of ovarian P450 aromatase mediated low estradiol synthesis in female offspring rats induced by prenatal nicotine exposure as well as in human granulosa cells after nicotine treatment. Food Chem Toxicol 2019; 128:256-266. [DOI: 10.1016/j.fct.2019.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 12/27/2022]
|
7
|
Knapczyk-Stwora K, Nynca A, Ciereszko RE, Paukszto L, Jastrzebski JP, Czaja E, Witek P, Koziorowski M, Slomczynska M. Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J Anim Sci Biotechnol 2019; 10:35. [PMID: 30988948 PMCID: PMC6446412 DOI: 10.1186/s40104-019-0340-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Androgens are involved in the regulation of ovarian development during fetal/neonatal life. Environmental chemicals displaying anti-androgenic activities may affect multiple signal transduction pathways by blocking endogenous androgen action. The aim of the current study was to examine effects of the anti-androgen flutamide on the expression of coding transcripts and long non-coding RNAs (lncRNAs) in neonatal porcine ovaries. By employing RNA-Seq technology we aimed to extend our understanding of the role of androgens in neonatal folliculogenesis and examine the impact of the anti-androgen flutamide on ovarian function. Method Piglets were subcutaneously injected with flutamide (50 mg/kg BW) or corn oil (controls) between postnatal days 1 and 10 (n = 3/group). Ovaries were excised from the 11-day-old piglets and total cellular RNAs were isolated and sequenced. Results Flutamide-treated piglet ovaries showed 280 differentially expressed genes (DEGs; P-adjusted < 0.05 and log2 fold change ≥1.0) and 98 differentially expressed lncRNAs (DELs; P-adjusted < 0.05 and log2FC ≥ 1.0). The DEGs were assigned to GO term, covering biological processes, molecular functions and cellular components, which linked the DEGs to functions associated with cellular transport, cell divisions and cytoskeleton. In addition, STRING software demonstrated strongest interactions between genes related to cell proliferation. Correlations between DEGs and DELs were also found, revealing that a majority of the genes targeted by the flutamide-affected lncRNAs were associated with intracellular transport and cell division. Conclusions Our results suggest that neonatal exposure of pigs to flutamide alters the expression of genes involved in ovarian cell proliferation, ovarian steroidogenesis and oocyte fertilization, which in turn may affect female reproduction in adult life.
Collapse
Affiliation(s)
- Katarzyna Knapczyk-Stwora
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Anna Nynca
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E Ciereszko
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,3Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- 4Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan P Jastrzebski
- 4Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elzbieta Czaja
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Patrycja Witek
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Marek Koziorowski
- 5Department of Physiology and Reproduction of Animals, University of Rzeszow, Rzeszow, Poland
| | - Maria Slomczynska
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
8
|
Ding L, Yan G, Wang B, Xu L, Gu Y, Ru T, Cui X, Lei L, Liu J, Sheng X, Wang B, Zhang C, Yang Y, Jiang R, Zhou J, Kong N, Lu F, Zhou H, Zhao Y, Chen B, Hu Y, Dai J, Sun H. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. SCIENCE CHINA. LIFE SCIENCES 2018; 61:1554-1565. [PMID: 29546669 DOI: 10.1007/s11427-017-9272-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Premature ovarian failure (POF) is a refractory disease for clinical treatment with the goal of restoring fertility. In this study, umbilical cord mesenchymal stem cells on a collagen scaffold (collagen/UC-MSCs) can activate primordial follicles in vitro via phosphorylation of FOXO3a and FOXO1. Transplantation of collagen/UC-MSCs to the ovaries of POF patients rescued overall ovarian function, evidenced by elevated estradiol concentrations, improved follicular development, and increased number of antral follicles. Successful clinical pregnancy was achieved in women with POF after transplantation of collagen/UC-MSCs or UC-MSCs. In summary, collagen/UC-MSC transplantation may provide an effective treatment for POF.
Collapse
Affiliation(s)
- Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bin Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yan Gu
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tong Ru
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoying Cui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Lei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingyu Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bin Wang
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chunxue Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yanjun Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jianjun Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Na Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Feifei Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huaijun Zhou
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
9
|
Steffensen LL, Ernst EH, Amoushahi M, Ernst E, Lykke-Hartmann K. Transcripts Encoding the Androgen Receptor and IGF-Related Molecules Are Differently Expressed in Human Granulosa Cells From Primordial and Primary Follicles. Front Cell Dev Biol 2018; 6:85. [PMID: 30148131 PMCID: PMC6095988 DOI: 10.3389/fcell.2018.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.
Collapse
Affiliation(s)
| | - Emil H Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Erik Ernst
- The Fertility Clinic, Horsens Hospital, Horsens, Denmark.,The Fertility Clinic, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Knapczyk-Stwora K, Grzesiak M, Ciereszko RE, Czaja E, Koziorowski M, Slomczynska M. The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology 2018; 113:19-26. [DOI: 10.1016/j.theriogenology.2018.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
11
|
The effect of mast cells on the biological characteristics of prostate cancer cells. Cent Eur J Immunol 2018; 43:1-8. [PMID: 29731687 PMCID: PMC5927167 DOI: 10.5114/ceji.2018.74867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023] Open
Abstract
Aim of the study To investigate the effects of mast cells on the proliferation, invasion, and metastasis of prostate cancer cells. Material and methods The mast cell P815 and prostate cancer LNCaP cells were chosen using a Transwell chamber to construct a two-cell cocultured in vitro model to observe the migration of mast cells to prostate cancer cells. Results In the migration experiment, the migration rate of mast cells from the experimental group (%) was 10.167 ±0.833, the mast cell migration rate (%) of the control group was 0.833 ±0.208, and the difference was statistically significant (p < 0.05). The MTT test showed that the OD value of cells in each group over time increased gradually, and 24 h after LNCaP cells were cocultured with different concentrations of mast cells, the OD value was significantly higher than that of the control group (p < 0.05). QRT-PCR and western blot results showed that, compared with the control group, E-cad expression from the experimental group was significantly weakened; N-cad and vimentin expression increased (p < 0.05), and c-kit and SCF expression from experimental group were significantly higher than that of the control group (p < 0.05). After the addition of c-kit neutralising antibodies, compared with the control group, the mast cell migration rate of experimental group decreased significantly and prostate cancer cell proliferation significantly decreased (p < 0.05). Conclusions Mast cells could promote the proliferation of prostate cancer cells and the occurrence of epithelial mesenchymal transition (EMT), which could promote the invasion and metastasis of prostate cancer cells.
Collapse
|
12
|
Lv F, Wan Y, Chen Y, Pei L, Luo D, Fan G, Luo M, Xu D, Wang H. Prenatal Dexamethasone Exposure Induced Ovarian Developmental Toxicity and Transgenerational Effect in Rat Offspring. Endocrinology 2018; 159:1401-1415. [PMID: 29370380 DOI: 10.1210/en.2018-00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
Abstract
Prenatal dexamethasone exposure (PDE) induces multiorgan developmental toxicities in offspring. Here we verified the transgenerational inheritance effect of ovarian developmental toxicity by PDE and explored its intrauterine programming mechanism. Pregnant rats subcutaneously received 0.2 mg/kg/d dexamethasone from gestational day (GD) 9 to GD20. A subgroup was euthanized for fetuses on GD20, and the other group went on to spontaneous labor to produce F1 offspring. The adult F1 females were mated with normal males to produce the F2 and F3 generations. The PDE fetal rats exhibited ovarian mitochondrial structural abnormalities, decreased serum estradiol (E2) levels, and lower expression levels of ovarian steroidogenic factor 1 (SF1), steroidal synthetases, and insulinlike growth factor 1 (IGF1). On postnatal week (PW) 6 and PW12, the PDE F1 offspring showed altered reproductive behavior and ovarian morphology. The serum E2 level and ovarian expression of SF1, steroidal synthetases, and IGF1 were also decreased. The adult F3 offspring showed alterations in reproductive phenotype and ovarian IGF1, SF1, and steroidal synthetase expression similar to those of F1. PDE induces ovarian developmental toxicity and transgenerational inheritance effects. The mechanism by which this toxicity occurs may be related to PDE-induced low-functional programming of fetal ovarian IGF1/SF1 and steroidal synthetases.
Collapse
Affiliation(s)
- Feng Lv
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yang Wan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yunxi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Linguo Pei
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Daji Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Guanlan Fan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
13
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us? Cancer Lett 2017; 405:10-21. [PMID: 28751268 DOI: 10.1016/j.canlet.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
|
14
|
Wu Y, Yang H, Wang X. The function of androgen/androgen receptor and insulin growth factor‑1/insulin growth factor‑1 receptor on the effects of Tribulus terrestris extracts in rats undergoing high intensity exercise. Mol Med Rep 2017; 16:2931-2938. [PMID: 28677770 DOI: 10.3892/mmr.2017.6891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
Our previous study demonstrated that treatment with Tribulus terrestris (TT) extracts (120 mg/kg) promoted the muscle weight gain and performance of rats undergoing high intensity exercise. The present study was designed to explore the mechanisms underlying the effect of treatment with TT extracts and the involvement of androgens, the androgen receptor (AR), insulin growth factor‑1 (IGF‑1) and the IGF‑1 receptor (IGF‑1R). A total of 32 Sprague‑Dawley rats were randomly divided into groups as follows: Control; TT, treated with TT extracts, E, high intensity exercise; E+TT, high intensity exercise plus TT treatment. The rats of the E and E+TT groups underwent high intensity exercise with a progressively increasing load for 5 weeks, and TT extracts were intragastrically administered in the TT and E+TT rats 30 min prior to training. TT extract composition was analyzed using ultra‑high performance liquid chromatography‑quadrupole‑time of flight mass spectrometry. Testosterone and IGF‑1 plasma levels and AR, IGF‑1R and myosin heavy chain (MHC) protein levels in muscles were determined by ELISA and western blotting, respectively. The saponins tigogenin and diosgenin comprised ~71.35% of the total peak area. Compared with the E group, TT extracts increased the testosterone and IGF‑1 plasma levels, and AR, IGF‑1R and MHC protein levels in the gastrocnemius of rats undergoing high intensity exercise, accompanied with increased body weight and gastrocnemius weight. In conclusion, the effect of TT extracts on the performance of high intensity exercise rats may be attributed to increased levels of circulating testosterone and IGF‑1 and increased AR and IGF‑1R protein expression levels in the gastrocnemius, resulting in increased muscle weight and increased MHC in the gastrocnemius. The present study provided preliminary evidence supporting the use of TT extracts as a dietary supplement for the promotion of skeletal muscle mass increase and the enhancement of athletic performance in humans performing high intensity exercise.
Collapse
Affiliation(s)
- Yin Wu
- Department of Computer and Statistics, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Hongfang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
15
|
Kim YY, Tamadon A, Ku SY. Potential Use of Antiapoptotic Proteins and Noncoding RNAs for Efficient In Vitro Follicular Maturation and Ovarian Bioengineering. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:142-158. [PMID: 27763207 DOI: 10.1089/ten.teb.2016.0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In vitro culture of ovarian follicles is a promising bioengineering technique for preserving fecundity in reproductive-aged female by providing fertilizable oocytes. Successful clinical application should be preceded by developing the protocols that can efficiently overcome follicular cell apoptosis since the apoptosis is a critical phenomenon in in vivo folliculogenesis and in in vitro follicular maturation. Numerous prosurvival and antiapoptotic molecules, including follicular developmental regulators, have been reported to be involved in the intraovarian apoptosis. The authors searched literature and analyzed the current knowledge of these proteins and noncoding RNAs, and their antiapoptotic roles in the dynamics of follicular development in vivo and in vitro. Two-dimensional (2D) culture method has widely been used, however, with recent emergence of various biomaterials, three-dimensional (3D) culture is also considered a proper environment for maintenance of solid structure of ovarian follicles. The identification of candidate paracrine and endocrine intracellular effectors that are responsible for the coordination occurring between oocyte, granulosa, and theca cells during follicular development was explored in this review, to assess the possibility of their use as antiapoptotic factors in establishing more efficacious 2D or 3D in vitro follicular microenvironment. The retrieved information will provide an inventory and the insight for defining more sophisticated culture conditions that are essential for functional artificial ovarian bioengineering.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital , Seoul, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, Seoul National University Hospital , Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital , Seoul, South Korea
| |
Collapse
|
16
|
An X, Song Y, Bu S, Ma H, Gao K, Hou J, Wang S, Lei Z, Cao B. Association of polymorphisms at the microRNA binding site of the caprine KITLG 3'-UTR with litter size. Sci Rep 2016; 6:25691. [PMID: 27168023 PMCID: PMC4863368 DOI: 10.1038/srep25691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023] Open
Abstract
This study identified three novel single nucleotide polymorphisms (SNPs) (c.1389C > T, c.1457A > C and c.1520G > A) in the caprine KITLG 3'-UTR through DNA sequencing. The three SNP loci were closely linked in Guanzhong dairy (GD) goats. Two alleles of the c.1457A > C SNP introduced two miRNA sites (chi-miR-204-5p and chi-miR-211). Individuals with combined genotype TT-CC-AA had a higher litter size compared with those with combined genotypes CC-AA-GG, TC-CC-GA and CC-AC-GG (P < 0.05). Luciferase assays showed that chi-miR-204-5p and chi-miR-211 suppressed luciferase expression in the presence of allele 1457A compared with negative control (NC) and allele 1457C (P < 0.05). Western blot revealed that KITLG significantly decreased in the granulosa cells (GCs) of genotype AA compared with that in the GCs of genotype CC and NC (P < 0.05). The KITLG mRNA levels of the CC-AA-GG carriers significantly decreased compared with those of the TT-CC-AA, TC-CC-GA and CC-AC-GG carriers. In addition, cell proliferation was reduced in haplotype C-A-G GCs compared with that in haplotype T-C-A GCs. These results suggest that SNPs c.1389C > T, c.1457A > C and c.1520G > A account for differences in the litter size of GD goats because chi-miR-204-5p and chi-miR-211 could change the expression levels of the KITLG gene and reduce GC proliferation.
Collapse
Affiliation(s)
- Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shuhai Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haidong Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jinxing Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhang Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
17
|
Knapczyk-Stwora K, Belej A, Grzesiak M, Slomczynska M. Effect of gestational antiandrogen treatment on Dicer1 expression in the porcine fetal gonads. Acta Histochem 2015; 117:725-31. [PMID: 26433267 DOI: 10.1016/j.acthis.2015.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022]
Abstract
Recently, we have demonstrated that flutamide-induced androgen deficiency during fetal life led to changes in gene expression that affected both testicular functions and follicular formation. It is known that microRNA-mediated genes regulation is essential for gonadal development and function. Thus, the aim of the present study was to examine whether prenatal flutamide exposure influences expression of Dicer1, an enzyme involved in microRNA maturation, in gonads of porcine fetuses during mid- and late gestation. Pregnant gilts were injected with flutamide (50mg/day/kg b.w.) or corn oil (controls) between days 43-49, 83-89 or 101-107 of gestation. The fetal gonads were obtained on gestational day 50 (GD50), 90 (GD90) or 108 (GD108). To assess Dicer1 mRNA expression real-time PCR were performed. Furthermore, immunohistochemical Dicer1 localization was conducted. In testes from flutamide treated fetuses, increased Dicer1 mRNA expression was observed in the GD50 and GD108 groups, but decreased in the GD90 group. Dicer1 was immunolocalized in the fetal Leydig cells in both control and flutamide-treated groups. In fetal ovaries, antiandrogen treatment increased Dicer1 mRNA level in the GD50 and GD90 groups. In control and flutamide-exposed groups, Dicer1 was localized in the germ cells within oogonia/oocyte nests as well as in the granulosa cells and oocytes of forming follicles. Concluding, diminished androgen action during gestation induces changes in Dicer1 mRNA expression, which may affect post-transcriptional gene regulation via miRNAs in porcine fetal gonads. However, it seems that androgens exert diverse biological effects depending on the gestational period.
Collapse
|
18
|
An XP, Hou JX, Lei YN, Gao TY, Song YX, Wang JG, Cao BY. Two mutations in the 5'-flanking region of the KITLG gene are associated with litter size of dairy goats. Anim Genet 2015; 46:308-11. [PMID: 25786329 DOI: 10.1111/age.12277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
Abstract
In this study, Xinong Saanen (SN) and Guanzhong (GZ) dairy goat breeds were used to detect single nucleotide polymorphisms (SNPs) in the 5'-flanking region of the KITLG gene by DNA sequencing and primer-introduced restriction analysis-polymerase chain reaction. Two novel SNPs (g.13090G>T and g.13664C>A) were identified (GenBank Accession no. KM658964). Furthermore, g.13090G>T and g.13664C>A loci were closely linked in SN and GZ breeds (r(2) > 0.33). Association analysis results showed that g.13090G>T and g.13664C>A SNPs significantly affected litter size (P < 0.05). The litter size of individuals with the combined genotype GG/CC from both dairy goat breeds was greater than that of individuals with TT/AA in average parity (P < 0.05). Known biochemical and physiological functions, along with our results, indicated that GG/CC could be used in marker-assisted selection to choose individuals with greater litter size from both breeds. These results extend the spectrum of genetic variation in the caprine KITLG gene and may contribute to genetic resources and breeding of goats.
Collapse
Affiliation(s)
- X P An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
19
|
An XP, Hou JX, Gao TY, Lei YN, Song YX, Wang JG, Cao BY. Association analysis between variants in KITLG gene and litter size in goats. Gene 2014; 558:126-30. [PMID: 25550049 DOI: 10.1016/j.gene.2014.12.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022]
Abstract
Xinong Saanen (SN) and Guanzhong (GZ) goat breeds were used to detect single nucleotide polymorphisms (SNPs) in the coding regions with their intron-exon boundaries and the proximal flanking regions of KITLG gene by DNA sequencing and genotyped by PCR-restriction fragment (PCR-RFLP). Four novel SNPs (g.12654G>A, g.12772G>A, g.12829T>C and g.23683C>T) were identified (GenBank accession No. KM609289). It was shown that Xinong Saanen and Guanzhong goat breeds were in Hardy-Weinberg disequilibrium at g.12654G>A, g.12772G>A and g.12829T>C loci (P<0.05). The g.12654G>A, g.12772G>A and g.12829T>C loci were closely linked in both goat breeds (r(2)>0.33). Results of an association analysis indicated that SNPs g.12654G>A, g.12772G>A and g.12829T>C had significant effects on litter size (P<0.05). The combined genotypes of four SNP loci also affected litter size with the C7(GG/GG/CC/CC) genotype in the SN goat breed and C1(AA/GG/CC/CC) and C7(GG/GG/CC/CC) genotypes in the GZ goat breed having the highest litter size. The biochemical and physiological functions, together with the results obtained in our investigation, suggest that C7(GG/GG/CC/CC) could be used in marker-assisted selection to select the individuals with higher litter size in both goat breeds. The results extend the spectrum of genetic variation of the caprine KITLG gene, which might contribute to goat genetic resources and breeding.
Collapse
Affiliation(s)
- X P An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - J X Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - T Y Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Y N Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Y X Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - J G Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - B Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
20
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility? ACTA ACUST UNITED AC 2014; 49:1-19. [PMID: 25451758 DOI: 10.1016/j.proghi.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
21
|
Knapczyk-Stwora K, Grzesiak M, Slomczynska M. Altered Expression of 3β-HSD, CYP17 and 17β-HSD in the Foetal Porcine Gonads in Response to Anti-androgen Flutamide Exposure. Reprod Domest Anim 2014; 49:725-33. [DOI: 10.1111/rda.12356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Affiliation(s)
- K Knapczyk-Stwora
- Department of Endocrinology; Institute of Zoology; Jagiellonian University in Krakow; Krakow Poland
| | - M Grzesiak
- Department of Endocrinology; Institute of Zoology; Jagiellonian University in Krakow; Krakow Poland
| | - M Slomczynska
- Department of Endocrinology; Institute of Zoology; Jagiellonian University in Krakow; Krakow Poland
| |
Collapse
|