1
|
Nazeri T, Hedayatpour A, Kazemzadeh S, Safari M, Safi S, Khanehzad M. Antioxidant Effect of Melatonin on Proliferation, Apoptosis, and Oxidative Stress Variables in Frozen-Thawed Neonatal Mice Spermatogonial Stem Cells. Biopreserv Biobank 2022; 20:374-383. [PMID: 35984941 DOI: 10.1089/bio.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is an important method to restore and maintain fertility in preadolescent children suffering from cancer. For protection of SSCs from cryoinjury, various antioxidant agents have been used. The aim of this study was to assess the antiapoptotic and antioxidant effects of melatonin in frozen-thawed SSCs. SSCs were isolated from testes of neonatal mice (3-6 days old) and their purities were measured by flow cytometry with promyelocytic leukemia zinc finger protein. After culturing, the cells were frozen in two groups (1) control and (2) melatonin (100 μM) and stored for 1 month. Finally, the cell viability, colonization rate, expression of Bcl-2 and BAX gene, and intracellular reactive oxygen species (ROS) were evaluated after freezing-thawing. Melatonin increased the viability and colonization of SSCs and Bcl-2 gene expression. It also diminished BAX gene expression and intracellular ROS. The results of this study show that melatonin with antioxidant and antiapoptotic effects can be used as an additive for freezing and long-term storage of cells and infertility treatment in the clinic.
Collapse
Affiliation(s)
- Tahoora Nazeri
- Department of Biology, Islamic Azad University of SariBranch, Mazandaran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahmoud Safari
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Samiullah Safi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Kazemzadeh S, Rastegar T, Zangi BM, Malekzadeh M, Khanehzad M, Khanlari P, Madadi S, Bashghareh A, Hedayatpour A. Effect of a Freezing Medium Containing Melatonin on Markers of Pre-meiotic and Post-meiotic Spermatogonial Stem Cells (SSCs) After Transplantation in an Azoospermia Mouse Model Due to Testicular Torsion. Reprod Sci 2021; 28:1508-1522. [PMID: 33481217 DOI: 10.1007/s43032-020-00447-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
Spermatogonial stem cells (SSCs) are essential to the initiation of spermatogenesis. Cryopreservation, long-term maintenance, and auto-transplantation of SSCs could be a new treatment for infertility. The aim of this study was to add melatonin to the basic freezing medium and to evaluate its effect on the efficiency of the thawed SSCs after transplantation into the testicles of azoospermic mice. SSCs were isolated from newborn NMRI mice, and the cells were enriched to assess morphological features. The thawed SSCs were evaluated for survival, apoptosis, and ROS level before transplantation, and the proliferation (MVH and ID4) and differentiation (c-Kit, SCP3, TP1, TP2, and Prm1) markers of SSCs were examined using immunofluorescence, western blot, and quantitative real-time polymerase chain reaction (PCR) after transplantation. It was found that the survival rate of SSCs after thawing was significantly higher in the melatonin group compared with the cryopreservation group containing basic freezing medium, and the rate of apoptosis and level of ROS production also decreased significantly in the cryopreservation group with melatonin (p < 0.05). The expression of proliferation and differentiation markers after transplantation was significantly higher in the cryopreservation group with melatonin compared to the cryopreservation group (p < 0.05). The results suggest that adding melatonin to the basic freezing medium can effectively protect the SSCs by increasing the viability and reducing the ROS production and apoptosis and improve the transplantation efficiency of SSCs after cryopreservation, which will provide a significant suggestion for fertility protection in the clinic.
Collapse
Affiliation(s)
- Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Minaei Zangi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Khanlari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bashawat M, Braun BC, Müller K. Cell survival after cryopreservation of dissociated testicular cells from feline species. Cryobiology 2020; 97:191-197. [PMID: 32194031 DOI: 10.1016/j.cryobiol.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
Testicular cell suspension (TCS) can be cryopreserved for male germ-line preservation and fertility restoration. We aimed to validate a cryopreservation protocol for TCS of domestic cat to be applied in endangered felids species. Testis tissue from adult domestic cats was enzymatically dissociated and spermatogenic cells were enriched. The resulting TCS was diluted in 7.5% or 15% Me2SO based medium. Slow and fast freezing methods were tested. We examined the effects of freezing approaches using two combinations of fluorescent dyes: Calcein-AM with Propidium iodide (C/PI) and SYBR14 with Propidium iodide (S/PI). Ploidy analysis of domestic cat fresh TCS revealed that the majority of testicular cells were haploid cells. Based on microscopic observation, two size populations (12.3 ± 2.3 μm and 20.5 ± 4 μm in diameter) were identified and presumed to be mainly spermatids and spermatocytes, respectively. Both evaluation methods proved higher viability of aggregated cells before and after cryopreservation compared with single cells, and superiority of low concentration of Me2SO (7.5%) in association with slow freezing to preserve viability of testicular cells. However, S/PI resulted in a more precise evaluation compared with the C/PI method. The combination of 7.5% Me2SO-based medium with slow freezing yielded post thaw viability of S/PI labeled aggregated (49.8 ± 20%) and single cells (31.5 ± 8.1%). Comparable results were achieved using testes of a Cheetah and an Asiatic golden cat. In conclusion, TCS from domestic cat can be successfully cryopreserved and has the potential to support fertility restoration of endangered felids species.
Collapse
Affiliation(s)
- M Bashawat
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany.
| | - B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315, Berlin, Germany
| |
Collapse
|
4
|
González Porto SA, Domenech N, González Rodríguez A, Avellaneda Oviedo EM, Blanco FJ, Arufe Gonda MC, Álvarez Jorge Á, Sánchez Ibañez J, Rendal Vázquez E. The addition of albumin improves Schwann cells viability in nerve cryopreservation. Cell Tissue Bank 2018; 19:507-517. [PMID: 29700649 DOI: 10.1007/s10561-018-9700-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/21/2018] [Indexed: 02/05/2023]
Abstract
The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4',6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.
Collapse
Affiliation(s)
- Sara Alicia González Porto
- Servicio de Cirugía Plástica, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Hospital Universitario de A Coruña, Xubias de Arriba 84, 15006, A Coruña, Spain.
| | - Nieves Domenech
- Biobanco A Coruña- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alba González Rodríguez
- Servicio de Cirugía Plástica, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Hospital Universitario de A Coruña, Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Edgar Mauricio Avellaneda Oviedo
- Servicio de Cirugía Plástica, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Hospital Universitario de A Coruña, Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - María C Arufe Gonda
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER BBN/ISCIII, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Ciencias Biomédicas, Medicina y Fisioterapia, Facultade de Oza, Universidade da Coruña (UDC), A Coruña, Spain
| | - Ángel Álvarez Jorge
- Servicio de Cirugía Plástica, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), Hospital Universitario de A Coruña, Xubias de Arriba 84, 15006, A Coruña, Spain
| | - Jacinto Sánchez Ibañez
- Unidad de Criobiología, Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain
| | - Esther Rendal Vázquez
- Unidad de Criobiología, Banco de Tejidos, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servicio Galego de Saúde (SERGAS), A Coruña, Spain
| |
Collapse
|
5
|
Costa GMJ, Avelar GF, Lacerda SMSN, Figueiredo AFA, Tavares AO, Rezende-Neto JV, Martins FGP, França LR. Horse spermatogonial stem cell cryopreservation: feasible protocols and potential biotechnological applications. Cell Tissue Res 2017; 370:489-500. [PMID: 28831567 DOI: 10.1007/s00441-017-2673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/09/2017] [Indexed: 01/04/2023]
Abstract
The establishment of proper conditions for spermatogonial stem cells (SSCs) cryopreservation and storage represents an important biotechnological approach for the preservation of the genetic stock of valuable animals. This study demonstrates the effects of different cryopreservation protocols on the survival rates and phenotypic expression of SSCs in horses. The cells were enzymatically isolated from testes of eight adult horses. After enrichment and characterization of germ cells in the suspension, the feasibility of several cryopreservation protocols were evaluated. Three different cryomedia compositions, associated with three different methods of freezing (vitrification, slow-freezing and fast-freezing) were evaluated. Based on the rates of viable SSCs found before and after thawing, as well as the number of recovered cells after cryopreservation, the best results were obtained utilizing the DMSO-based cryomedia associated with the slow-freezing method. In addition, when isolated cells were cultured in vitro, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and immunofluorescence analysis indicated that the cryopreserved cells were as metabolically active as the fresh cells and were also expressing typical SSCs proteins (VASA, NANOS2 and GFRA1). Therefore, our results indicate that equine SSCs can be cryopreserved without impairment of structure, function, or colony-forming abilities.
Collapse
Affiliation(s)
- Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Gleide F Avelar
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Samyra M S N Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - André F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - José V Rezende-Neto
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe G P Martins
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| |
Collapse
|