1
|
Xi B, Zhao S, Zhang R, Lu Z, Li J, An X, Yue Y. Transcriptomic Study of Different Stages of Development in the Testis of Sheep. Animals (Basel) 2024; 14:2767. [PMID: 39409717 PMCID: PMC11475124 DOI: 10.3390/ani14192767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Numerous genes govern male reproduction, modulating testicular development and spermatogenesis. Our study leveraged RNA-Seq to explore candidate genes and pivotal pathways influencing fecundity in an F1 hybrid of Southdown × Hu sheep testes across four developmental milestones: M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). Histological examination using hematoxylins and eosin staining revealed that the cross-sectional area of the spermatid tubules and the number of supportive cells increased in the other groups, as compared to the M0 group. The cross-sectional area of the vasculature and the number of supporting cells were found to be significantly increased in all other groups in comparison to the M0 group. We conducted GO and KEGG analyses of the differentially expressed genes (DEGs) in the three comparison groups and identified key pathways, including cAMP, MAPK, ECM-receptor interactions, PI3K-Akt, and FOXO signaling, which are closely related to testicular development and spermatogenesis. Notably, alternative splicing (AS) events were markedly elevated in M6 and Y1 stages. Key genes like GATA4, GATA6, SMAD4, SOX9, YAP1, ITGB1 and MAPK1 emerged as significantly enriched in these pathways, potentially orchestrating the transition from immature to mature testes in sheep. These findings offer valuable insights into male reproductive potential and can inform strategies for optimizing animal breeding.
Collapse
Affiliation(s)
- Binpeng Xi
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.X.); (R.Z.); (Z.L.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
van Tilburg M, Sousa S, Lobo MDP, Monteiro-Azevedo ACOM, Azevedo RA, Araújo AA, Moura AA. Mapping the major proteome of reproductive fluids and sperm membranes of rams: From the cauda epididymis to ejaculation. Theriogenology 2020; 159:98-107. [PMID: 33126182 DOI: 10.1016/j.theriogenology.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
The present study evaluated the major proteome of ram seminal plasma and the main secretions that contribute to its formation, such as the cauda epididymal and accessory sex gland fluids. The study also investigated sperm membrane protein profiles before and after ejaculation. First, semen was collected from six rams (using artificial vagina) to obtain seminal plasma and ejaculated sperm. Then, rams were vasectomized for collection of accessory sex gland fluid (using artificial vagina). Next, rams were slaughtered and cauda epididymal fluid (CEF), seminal vesicle fluid, bulbourethral gland fluid and cauda epididymal sperm were properly collected. Proteins from reproductive fluids and sperm membranes were analyzed by 2-D SDS-PAGE, tandem mass spectrometry and bioinformatics. There we 386 proteins and 256 isoforms identified in all samples. The most abundant seminal plasma proteins were BSP1, BSP5 and spermadhesins (bodhesin-2 and spermadhesin Z13-like). These proteins were present in similar patterns in maps of accessory sexgland fluid, with very low quantities in the CEF and absent in the bulbourethral gland secretion. Thus, practically all BSPs and spermadhesins come from seminal vesicles. Bulbourethral gland fluid brought bactericidal/permeability-increasing protein-containing Family A member 1 isoforms, superoxide dismutase [Cu-Zn] and betamicroseminoprotein to seminal plasma. CEF was the major provider of clusterin, epididymal-specific lipocalin-5-like isoform, epididymal secretory gluthathione peroxidase, epididymal secretory protein E1 and prostaglandin-H2 D-isomerase to seminal plasma. Albumin came from all reproductive fluids. BSPs and spermadhesins were present in 2-D maps of ejaculated sperm but absent in cauda epididymal sperm. These proteins come from the seminal vesicles and bind to sperm at the moment of ejaculation. Other proteins of ejaculated and epididymal sperm membranes were mostly associated to energy production, cell adhesion and proteolytic activity (ATP synthases, disintegrin, metalloproteinase domain-containing protein 32, carboxypeptidase Q and cytosol aminopeptidase). In conclusion, there is a well-orchestrated sequence of events to form the major seminal plasma proteome, with specific contributions from cauda epididymis, seminal vesicles and bulbourethral glands. The present data contribute to a better understanding of male reproductive biology and how sperm functions are affected by the noncellularmicro environment of semen.
Collapse
Affiliation(s)
- Mauricio van Tilburg
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil
| | - Solange Sousa
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Marina D P Lobo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | | | - Renato A Azevedo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; The School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
3
|
Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF. pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci 2019; 76:3783-3800. [PMID: 31165202 PMCID: PMC11105638 DOI: 10.1007/s00018-019-03170-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3- and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3- membrane transporters (solute carrier 4-SLC4 and solute carrier 26-SLC26 family transporters), Na+-H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3- which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3- production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - David F Carrageta
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Marco G Alves
- Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal.
- i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Martins AD, Agarwal A, Baskaran S, Pushparaj PN, Ahmad G, Panner Selvam MK. Alterations of Spermatozoa Proteomic Profile in Men with Hodgkin's Disease Prior to Cancer Therapy. World J Mens Health 2019; 38:521-534. [PMID: 31385466 PMCID: PMC7502316 DOI: 10.5534/wjmh.190012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Hodgkin's disease (HD) is a type of cancer affecting men in the reproductive age with potential consequences on their fertility status. This study aims to analyze sperm parameters, alterations in proteomic profiles and validate selected protein biomarkers of spermatozoa in men with HD undergoing sperm banking before cancer therapy. Materials and Methods Semen analysis was carried out in healthy fertile donors (control, n=42), and patients diagnosed with HD (patients, n=38) before cancer therapy. We compared proteomic profiles of spermatozoa from donors (n=3) and patients (n=3) using LTQ-Orbitrap Elite hybrid MS system. Results A total of 1,169 proteins were identified by global proteomic in both groups. The ingenuity pathway analysis revealed that differentially expressed proteins involved in capacitation, acrosome reaction, binding of sperm to the zona pellucida, sperm motility, regulation of sperm DNA damage, and apoptosis were significantly downregulated in HD patients. Validation of proteins implicated in sperm fertility potential by Western Blot demonstrated that peroxiredoxin 2 (PRDX 2) was underexpressed (p=0.015), and transferrin (p=0.045) and SERPIN A5 (p=0.010) protein levels were overexpressed in spermatozoa of men with HD. Conclusions Findings of this study indicates that the key proteins involved in sperm fertility potential are significantly altered in men with HD, which provides substantial explanation for the observed low sperm quality in HD subjects prior to cancer therapy. Furthermore, our results suggest PRDX 2, transferrin and SERPIN A5 as possible candidate proteins for assessing sperm quality in HD patients prior to cancer therapy.
Collapse
Affiliation(s)
- Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gulfam Ahmad
- Discipline of Pathology, School of Medical Sciences, Sydney University, Sydney, Australia
| | | |
Collapse
|