1
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
2
|
Morawietz J, Körber H, Packeiser EM, Beineke A, Goericke-Pesch S. Insights into Canine Infertility: Apoptosis in Chronic Asymptomatic Orchitis. Int J Mol Sci 2023; 24:ijms24076083. [PMID: 37047053 PMCID: PMC10094104 DOI: 10.3390/ijms24076083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic asymptomatic orchitis (CAO) is a common cause of acquired non-obstructive azoospermia in dogs. To understand the impact and mode of action of apoptosis, we investigated TUNEL, Bax, Bcl-2, Fas/Fas ligand, and caspase 3/8/9 in testicular biopsies of CAO-affected dogs and compared the results to undisturbed spermatogenesis in healthy males (CG). TUNEL+ cells were significantly increased in CAO, correlating with the disturbance of spermatogenesis. Bcl-2, Bax (p < 0.01 each), caspase 9 (p < 0.05), Fas, caspase 8 (p < 0.01 each), and caspase 3 (p < 0.05) were significantly increased at the mRNA level, whereas FasL expression was downregulated. Cleaved caspase 3 staining was sporadic in CAO but not in CG. Sertoli cells, some peritubular (CAO/CG) and interstitial immune cells (CAO) stained Bcl-2+, with significantly more immunopositive cells in both compartments in CAO compared to CG. Bcl-2 and CD20 co-expressing B lymphocytes were encountered interstitially and in CAO occasionally also found intratubally, underlining their contribution to the maintenance of CAO. Our results support the crucial role of the intrinsic and extrinsic apoptotic pathways in the pathophysiology of canine CAO. Autoprotective Bcl-2 expression in Sertoli cells and B lymphocytes seems to be functional, however, thereby also maintaining and promoting the disease by immune cell activation.
Collapse
Affiliation(s)
- Judith Morawietz
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hanna Körber
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sandra Goericke-Pesch
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
3
|
Krzeminska P, Stachowiak M, Skrzypski M, Nowak T, Maslak A, Switonski M. Altered expression of CYP17A1 and CYP19A1 in undescended testes of dogs with unilateral cryptorchidism. Anim Genet 2020; 51:763-771. [PMID: 32657440 DOI: 10.1111/age.12977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Cryptorchidism is the most common disorder of sex development in dogs and testosterone plays a crucial role in the inguinal phase of the testes descending into the scrotum. The molecular background of impaired testosterone synthesis in the testes of cryptorchid dogs is poorly elucidated. In this study, we analyzed the expression of four genes involved in testicular steroidogenesis (CYP17A1, CYP19A1, HSD3B2 and HSD17B3) in undescended and contralateral scrotal testes from inguinal unilateral cryptorchid dogs (n = 13) and from the scrotal gonads of normal males (n = 15). We found that transcript level of CYP17A1 was significantly increased in inguinal gonads, while the level of CYP19A1 was decreased. For these two genes, we analyzed the methylation level of single CpG sites in the promoter region localized within putative target sites for testicular transcription factors (NUR77, CREB, CAR and HSF2). A correlation between decreased methylation in the promoter of CYP17A1 and its increased transcript level in undescended gonads was observed, but the change in protein level was not significant. We also resequenced the 5'-flanking region of both genes and two known polymorphic sites, SNP in CYP17A1 and an indel in CYP19A1, were found. However, the distribution of the variants in affected (n = 80) and control (n = 75) dogs was not associated with cryptorchidism. We tentatively conclude that the altered expression of CYP17A1 and CYP19A1 in undescended testes could be caused by their exposure to increased temperature in the body. Furthermore, we showed that the identified polymorphisms cannot be considered markers associated with a predisposition to cryptorchidism.
Collapse
Affiliation(s)
- P Krzeminska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - M Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - M Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - T Nowak
- Department of Animal Reproduction, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - A Maslak
- Vital-Vet Veterinary Surgery, sw. Floriana 4, 62-045, Pniewy, Poland
| | - M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| |
Collapse
|
4
|
Park HJ, Song H, Woo JS, Chung HJ, Park JK, Cho KH, Mo Yeo J, Lee WY. Expression patterns of male germ cell markers in cryptorchid pig testes. Acta Histochem 2019; 121:784-790. [PMID: 31324385 DOI: 10.1016/j.acthis.2019.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Abstract
Male germ cell apoptosis has been described in heat-damaged testes by cryptorchidism. In the present study, wild type pig testes were compared with cryptorchid testes via histological and immunohistological analyses. Spermatozoa were not detected in two cryptorchid testes and the diameters of seminiferous tubules were significantly reduced in cryptorchid pig testes compared with wild type pig testes. Cells expressing marker genes for undifferentiated spermatogonia, such as protein gene product 9.5 was significantly decreased in cryptochid pig testes. In addition, the numbers of cells expressing DEAD-box polypeptide 4 (VASA), synaptonemal complex protein 3, protamine, and acrosin (a biomarker of spermatocyte, spermatid, and spermatozoa) were significantly reduced in cryptochid pig testes. However, the number of vimentin-expressing Sertoli cells was not changed or was significantly increased in cryptorchid pig testes. This result indicates that male germ cells are specifically damaged by heat in cryptorchid pig testes and not Sertoli cells. These findings will facilitate the further study of spermatogenesis and the specific mechanisms by which cryptorchidism causes male infertility.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
| | - Hak-Jae Chung
- Swine Science Division, National Institute of Animal Science, RDA, Cheoan-si 31000, Republic of Korea
| | - Jin-Ki Park
- Department of Swine & Poultry Science, Korea National College of Agriculture and Fisheries, Jeonbuk 54874, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Beef & Dairy Science, Korea National College of Agricultures and Fisheries, Jeonbuk 54874, Republic of Korea
| | - Joon Mo Yeo
- Department of Beef & Dairy Science, Korea National College of Agricultures and Fisheries, Jeonbuk 54874, Republic of Korea
| | - Won-Young Lee
- Department of Beef & Dairy Science, Korea National College of Agricultures and Fisheries, Jeonbuk 54874, Republic of Korea.
| |
Collapse
|