1
|
Drzewiecka EM, Kozlowska W, Zmijewska A, Franczak A. Nutritional restriction during the peri-conceptional period alters the myometrial transcriptome during the peri-implantation period. Sci Rep 2021; 11:21187. [PMID: 34707153 PMCID: PMC8551329 DOI: 10.1038/s41598-021-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
This study hypothesized that female peri-conceptional undernutrition evokes transcriptomic alterations in the pig myometrium during the peri-implantation period. Myometrium was collected on days 15-16 of pregnancy from pigs fed a normal- (n = 4) or restricted-diet (n = 4) from conception until day 9th of pregnancy, and the transcriptomic profiles of the tissue were compared using Porcine (V2) Expression Microarrays 4 × 44 K. In restricted diet-fed pigs, 1021 differentially expressed genes (DEGs) with fold change ≥ 1.5, P ≤ 0.05 were revealed, and 708 of them were up-regulated. Based on the count score, the top within GOs was GO cellular components "extracellular exosome", and the top KEGG pathway was the metabolic pathway. Ten selected DEGs, i.e. hydroxysteroid (17β) dehydrogenase 8, cyclooxygenase 2, prostaglandin F receptor, progesterone receptor membrane component 1, progesterone receptor membrane component 2, annexin A2, homeobox A10, S-phase cyclin A-associated protein in the ER, SRC proto-oncogene, non-receptor tyrosine kinase, and proliferating cell nuclear antigen were conducted through qPCR to validate microarray data. In conclusion, dietary restriction during the peri-conceptional period causes alterations in the expression of genes encoding proteins involved i.a. in the endocrine activity of the myometrium, embryo-maternal interactions, and mechanisms regulating cell cycle and proliferation.
Collapse
Affiliation(s)
- Ewa Monika Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Wiktoria Kozlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
2
|
Orr TJ, Hayssen V. The Female Snark Is Still a Boojum: Looking toward the Future of Studying Female Reproductive Biology. Integr Comp Biol 2021; 60:782-795. [PMID: 32702114 DOI: 10.1093/icb/icaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Philosophical truths are hidden in Lewis Carroll's nonsense poems, such as "The hunting of the snark." When the poem is used as a scientific allegory, a snark stands for the pursuit of scientific truth, while a boojum is a spurious discovery. In the study of female biology, boojums have been the result of the use of cultural stereotypes to frame hypotheses and methodologies. Although female reproduction is key for the continuation of sexually reproducing species, not only have females been understudied in many regards, but also data have commonly been interpreted in the context of now-outdated social mores. Spurious discoveries, boojums, are the result. In this article, we highlight specific gaps in our knowledge of female reproductive biology and provide a jumping-off point for future research. We discuss the promise of emerging methodologies (e.g., micro-CT scanning, high-throughput sequencing, proteomics, big-data analysis, CRISPR-Cas9, and viral vector technology) that can yield insights into previously cryptic processes and features. For example, in mice, deoxyribonucleic acid sequencing via chromatin immunoprecipitation followed by sequencing is already unveiling how epigenetics lead to sex differences in brain development. Similarly, new explorations, including microbiome research, are rapidly debunking dogmas such as the notion of the "sterile womb." Finally, we highlight how understanding female reproductive biology is well suited to the National Science Foundation's big idea, "Predicting Rules of Life." Studies of female reproductive biology will enable scholars to (1) traverse levels of biological organization from reproductive proteins at the molecular level, through anatomical details of the ovum and female reproductive tract, into physiological aspects of whole-organism performance, leading to behaviors associated with mating and maternal care, and eventually reaching population structure and ecology; (2) discover generalizable rules such as the co-evolution of maternal-offspring phenotypes in gestation and lactation; and (3) predict the impacts of changes to reproductive timing when the reliability of environmental cues becomes unpredictable. Studies in these key areas relative to female reproduction are sure to further our understanding across a range of diverse taxa.
Collapse
Affiliation(s)
- Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Virginia Hayssen
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| |
Collapse
|
3
|
Rotondo JC, Aquila G, Oton-Gonzalez L, Selvatici R, Rizzo P, De Mattei M, Pavasini R, Tognon M, Campo GC, Martini F. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome. Clin Epigenetics 2021; 13:79. [PMID: 33858475 PMCID: PMC8048251 DOI: 10.1186/s13148-021-01066-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diagnostic biomarkers for detecting chronic obstructive pulmonary disease (COPD) in acute coronary syndrome (ACS) patients are not available. SERPINA1, coding for the most potent circulating anti-inflammatory protein in the lung, has been found to be differentially methylated in blood cells from COPD patients. This study aimed to investigate the methylation profile of SERPINA1 in blood cells from ACS patients, with (COPD+) or without COPD (COPD-). METHODS Blood samples were from 115 ACS patients, including 30 COPD+ and 85 COPD- according to lung function phenotype, obtained with spirometry. DNA treated with sodium bisulfite was PCR-amplified at SERPINA1 promoter region. Methylation analysis was carried out by sequencing the PCR products. Lymphocytes count in ACS patients was recorded at hospital admission and discharge. RESULTS SERPINA1 was hypermethylated in 24/30 (80%) COPD+ and 48/85 (56.5%) COPD- (p < 0.05). Interestingly, at hospital discharge, lymphocytes count was higher in COPD- patients carrying SERPINA1 hypermethylated (1.98 × 103 ± 0.6 cell/µl) than in COPD- carrying SERPINA1 hypomethylated (1.7 × 103 ± 0.48 cell/µl) (p < 0.05). CONCLUSIONS SERPINA1 is hypermethylated in blood cells from COPD+ patients. COPD- carrying SERPINA1 hypermethylated and high lymphocytes count may be at risk of COPD development. Therefore, SERPINA1 hypermethylation may represent a potential biomarker for predicting COPD development in ACS patients.
Collapse
Affiliation(s)
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Rita Selvatici
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70 Eliporto Street, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rita Pavasini
- Cardiology Unit, Azienda Ospedaliera Universitaria Di Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70 Eliporto Street, 44121, Ferrara, Italy.
| |
Collapse
|
4
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L. Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
5
|
Zang X, Gu T, Hu Q, Xu Z, Xie Y, Zhou C, Zheng E, Huang S, Xu Z, Meng F, Cai G, Wu Z, Hong L. Global Transcriptomic Analyses Reveal Genes Involved in Conceptus Development During the Implantation Stages in Pigs. Front Genet 2021; 12:584995. [PMID: 33719331 PMCID: PMC7943634 DOI: 10.3389/fgene.2021.584995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/08/2021] [Indexed: 01/18/2023] Open
Abstract
Prenatal mortality remains a significant concern to the pig farming industry around the world. Spontaneous fetal loss ranging from 20 to 45% by term occur after fertilization, with most of the loss happening during the implantation period. Since the factors regulating the high mortality rates of early conceptus during implantation phases are poorly understood, we sought to analyze the overall gene expression changes during this period, and identify the molecular mechanisms involved in conceptus development. This work employed Illumina's next-generation sequencing (RNA-Seq) and quantitative real-time PCR to analyze differentially expressed genes (DEGs). Soft clustering was subsequently used for the cluster analysis of gene expression. We identified 8236 DEGs in porcine conceptus at day 9, 12, and 15 of pregnancy. Annotation analysis of these genes revealed rRNA processing (GO:0006364), cell adhesion (GO:1904874), and heart development (GO:0007507), as the most significantly enriched biological processes at day 9, 12, and 15 of pregnancy, respectively. In addition, we found various genes, such as T-complex 1, RuvB-like AAA ATPase 2, connective tissue growth factor, integrins, interferon gamma, SLA-1, chemokine ligand 9, PAG-2, transforming growth factor beta receptor 1, and Annexin A2, that play essential roles in conceptus morphological development and implantation in pigs. Furthermore, we investigated the function of PAG-2 in vitro and found that PAG-2 can inhibit trophoblast cell proliferation and migration. Our analysis provides a valuable resource for understanding the mechanisms of conceptus development and implantation in pigs.
Collapse
Affiliation(s)
- Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Fanming Meng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Kolakowska J, Drzewiecka EM, Kozlowska W, Zmijewska A, Souchelnytskyi S, Franczak A. Proteomic profile alterations in porcine conceptuses during early stages of development. Reprod Biol 2021; 21:100481. [PMID: 33529998 DOI: 10.1016/j.repbio.2021.100481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
The dynamic embryo development during the early stages of gestation requires precise molecular changes, including proteomic ones. We aimed to find unique proteins for porcine conceptuses specifically during the peri-implantation period, i.e. on days 15-16 of pregnancy. The proteomic profile of these conceptuses was compared with conceptuses at an earlier stage of the development, i.e. collected during maternal recognition of pregnancy on days 12-13 of pregnancy. The 2DE, gel image analysis, and MALDI TOF mass spectrometry were used 500 protein spots were annotated as common to conceptuses harvested during both studied periods. Proteomic profile of the conceptuses collected during the peri-implantation period contains 24 unique proteins. Identified unique for the peri-implantation period proteins are involved in adhesion processes, cadherin, and actin-binding, and actin filament organization, extracellular matrix organization, and cytoskeleton organization. Systemic analysis of identified proteins confirmed their involvement in cell adhesion and cytoskeletal organization as being two major affected functions. The unique proteins might be recognized as factors conditioning the proper peri-implantation embryo development and gaining competences for implantation. In further studies, BRCA1 might be considered as a candidate for a potential marker of embryonic competences for implantation in pigs.
Collapse
Affiliation(s)
- Justyna Kolakowska
- Department of Anatomy and Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Ewa Monika Drzewiecka
- Department of Anatomy and Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Wiktoria Kozlowska
- Department of Anatomy and Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Agata Zmijewska
- Department of Anatomy and Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Serhiy Souchelnytskyi
- Neurocentrum, Karolinska University Hospital, Neurologmottagningen, 171 76, Solna, Stockholm, Sweden; Oranta Cancer Diagnostics AB, Norrens väg 73, 752 63, Uppsala, Sweden; College of Medicine, QU Health, Qatar University, Building H12, PO Box 2713, Doha, Qatar
| | - Anita Franczak
- Department of Anatomy and Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
7
|
The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci Rep 2020; 10:5061. [PMID: 32193402 PMCID: PMC7081221 DOI: 10.1038/s41598-020-60810-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Semen modifies the expression of genes related to immune function along the porcine female internal genital tract. Whether other pathways are induced by the deposition of spermatozoa and/or seminal plasma (SP), is yet undocumented. Here, to determine their relative impact on the uterine and tubal transcriptomes, microarray analyses were performed on the endocervix, endometrium and endosalpinx collected from pre-ovulatory sows 24 h after either mating or artificial insemination (AI) with specific ejaculate fractions containing spermatozoa or sperm-free SP. After enrichment analysis, we found an overrepresentation of genes and pathways associated with sperm transport and binding, oxidative stress and cell-to-cell recognition, such as PI3K-Akt, FoxO signaling, glycosaminoglycan biosynthesis and cAMP-related transcripts, among others. Although semen (either after mating or AI) seemed to have the highest impact along the entire genital tract, our results demonstrate that the SP itself also modifies the transcriptome. The detected modifications of the molecular profiles of the pre/peri-ovulatory endometrium and endosalpinx suggest an interplay for the survival, transport and binding of spermatozoa through, for instance the up-regulation of the Estrogen signaling pathway associated with attachment and release from the oviductal reservoir.
Collapse
|
8
|
Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos. Theriogenology 2018; 123:185-193. [PMID: 30312936 DOI: 10.1016/j.theriogenology.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Maternal undernutrition during the periconceptional period alters the transcriptomic profile of pig endometrium and embryos. Herein, we tested the hypothesis that restricted maternal consumption by females during the periconceptional period impairs the pattern of DNA methylation in both the endometrium and embryos during the peri-implantation period (Day 15-16 of gestation). Affected genes in restricted-diet-fed pig endometrium and embryos were identified using quantitative methylation-specific PCR and comprised those genes which are known to be important in reproductive, metabolic and epigenetic function, thereby exhibiting altered transcriptomic expression in endometrium and embryos of restricted-diet-fed gilts. Specifically, levels of DNA methylation of selected genes with altered expression in the endometrium included acid phosphatase type 2C (PPAP2C), salivary lipocalin (SAL1), endothelin receptor type B (EDNRB), regulator of G-protein signalling 12 (RGS12), type 4 17β-hydroxysteroid dehydrogenase (HSD17B4), toll-like receptor 3 (TLR3), and adiponectin receptor 1 (ADIPOR1). In embryos, adiponectin receptor 2 (ADIPOR2), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), progestin and adipoQ receptor family member 7 (PAQR7), progesterone receptor membrane component 2 (PGRMC2), steroidogenic acute regulatory protein (STAR), and serpin family A member 1 (SERPINA1) were altered. Finally, 5 acid phosphatase tartrate resistant (ACP5), high mobility group box 2 (HMGB2), and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were altered in both the endometrium and in embryos. In the endometrium, the methylation levels of ACP5 (regulation of endometrial-conceptus iron transport), RGS12 (protein-coupled receptor signalling), and TLR3 (immune response) were increased, while that of EDNRB (corpus luteum maintenance) was decreased. In embryos, the methylation levels of ADIPOR2 (metabolic homeostasis) and DNMT1 (DNA methylation maintenance) were increased. The levels of methylation in other studied endometrial and embryonic genes were unchanged. DNA methylation levels in both the peri-implantation pig endometrium and embryos may be altered in response to female nutritional restriction.
Collapse
|