1
|
Tourmente M, Sanchez-Rodriguez A, Roldan ERS. Effect of Motility Factors D-Penicillamine, Hypotaurine and Epinephrine on the Performance of Spermatozoa from Five Hamster Species. BIOLOGY 2022; 11:526. [PMID: 35453725 PMCID: PMC9032960 DOI: 10.3390/biology11040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Assessments of sperm performance are valuable tools for the analysis of sperm fertilizing potential and to understand determinants of male fertility. Hamster species constitute important animal models because they produce sperm cells in high quantities and of high quality. Sexual selection over evolutionary time in these species seems to have resulted in the largest mammalian spermatozoa, and high swimming and bioenergetic performances. Earlier studies showed that golden hamster sperm requires motility factors such as D-penicillamine, hypotaurine and epinephrine (PHE) to sustain survival over time, but it is unknown how they affect swimming kinetics or ATP levels and if other hamster species also require them. The objective of the present study was to examine the effect of PHE on spermatozoa of five hamster species (Mesocricetus auratus, Cricetulus griseus, Phodopus campbelli, P. sungorus, P. roborovskii). In sperm incubated for up to 4 h without or with PHE, we assessed motility, viability, acrosome integrity, sperm velocity and trajectory, and ATP content. The results showed differences in the effect of PHE among species. They had a significant positive effect on the maintenance of sperm quality in M. auratus and C. griseus, whereas there was no consistent effect on spermatozoa of the Phodopus species. Differences between species may be the result of varying underlying regulatory mechanisms of sperm performance and may be important to understand how they relate to successful fertilization.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
2
|
Fuentes-Albero MC, González-Brusi L, Cots P, Luongo C, Abril-Sánchez S, Ros-Santaella JL, Pintus E, Ruiz-Díaz S, Barros-García C, Sánchez-Calabuig MJ, García-Párraga D, Avilés M, Izquierdo Rico MJ, García-Vázquez FA. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin ( Tursiops truncatus). Front Cell Dev Biol 2021; 9:673961. [PMID: 34336830 PMCID: PMC8323341 DOI: 10.3389/fcell.2021.673961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.
Collapse
Affiliation(s)
- Mari-Carmen Fuentes-Albero
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Paula Cots
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Chiara Luongo
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Silvia Abril-Sánchez
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Sara Ruiz-Díaz
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain
| | | | - María-Jesús Sánchez-Calabuig
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain.,Department of Medicine and Surgery, Faculty of Veterinary Science, Madrid, Spain
| | - Daniel García-Párraga
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Research Department, Fundación Oceanogràfic, Valencia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Mᵃ José Izquierdo Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | |
Collapse
|
3
|
Alves LQ, Ruivo R, Valente R, Fonseca MM, Machado AM, Plön S, Monteiro N, García-Parraga D, Ruiz-Díaz S, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Castro LFC. A drastic shift in the energetic landscape of toothed whale sperm cells. Curr Biol 2021; 31:3648-3655.e9. [PMID: 34171300 DOI: 10.1016/j.cub.2021.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Mammalian spermatozoa are a notable example of metabolic compartmentalization.1 Energy in the form of ATP production, vital for motility, capacitation, and fertilization, is subcellularly separated in sperm cells. While glycolysis provides a local, rapid, and low-yielding input of ATP along the flagellum fibrous sheath, oxidative phosphorylation (OXPHOS), far more efficient over a longer time frame, is concentrated in the midpiece mitochondria.2 The relative weight of glycolysis and OXPHOS pathways in sperm function is variable among species and sensitive to oxygen and substrate availability.3-5 Besides partitioning energy production, sperm cell energetics display an additional singularity: the occurrence of sperm-specific gene duplicates and alternative spliced variants, with conserved function but structurally bound to the flagellar fibrous sheath.6,7 The wider selective forces driving the compartmentalization and adaptability of this energy system in mammalian species remain largely unknown, much like the impact of ecosystem resource availability (e.g., carbohydrates, fatty acids, and proteins) and dietary adaptations in reproductive physiology traits.8 Here, we investigated the Cetacea, an iconic group of fully aquatic and carnivorous marine mammals, evolutionarily related to extant terrestrial herbivores.9 In this lineage, episodes of profound trait remodeling have been accompanied by clear genomic signatures.10-14 We show that toothed whales exhibit impaired sperm glycolysis, due to gene and exon erosion, and demonstrate that dolphin spermatozoa motility depends on endogenous fatty acid β-oxidation, but not carbohydrates. Such unique energetic rewiring substantiates the observation of large mitochondria in toothed whale spermatozoa and emphasizes the radical physiological reorganization imposed by the transition to a carbohydrate-depleted marine environment.
Collapse
Affiliation(s)
- Luís Q Alves
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Miguel M Fonseca
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - André M Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Stephanie Plön
- Department of Pathology, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Nuno Monteiro
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal; CIBIO - Research Centre in Biodiversity and Genetic Resources, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| | - David García-Parraga
- Veterinary Services, L'Oceanográfic, Ciudad de las Artes y las Ciencias, Junta de Murs i Vals, s/n, 46013 Valencia, Spain
| | - Sara Ruiz-Díaz
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Mistral Fertility Clinics S.L., Clínica Tambre, 28002 Madrid, Spain
| | - Maria J Sánchez-Calabuig
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, 28040 Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
4
|
van der Horst G. Status of Sperm Functionality Assessment in Wildlife Species: From Fish to Primates. Animals (Basel) 2021; 11:1491. [PMID: 34064087 PMCID: PMC8224341 DOI: 10.3390/ani11061491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: in order to propagate wildlife species (covering the whole spectrum from species suitable for aquaculture to endangered species), it is important to have a good understanding of the quality of their sperm, oocytes and embryos. While sperm quality analyses have mainly used manual assessment in the past, such manual estimations are subjective and largely unreliable. Accordingly, quantitative and cutting-edge approaches are required to assess the various aspects of sperm quality. The purpose of this investigation was to illustrate the latest technology used in quantitative evaluation of sperm quality and the required cut-off points to distinguish the differential grades of fertility potential in a wide range of vertebrate species. (2) Methods: computer-aided sperm analysis (CASA) with an emphasis on sperm motility, 3D tracking and flagellar and sperm tracking analysis (FAST), as well as quantitative assessment of sperm morphology, vitality, acrosome status, fragmentation and many other complimentary technologies. (3) Results: Assessing sperm quality revealed a great deal of species specificity. For example, in freshwater fish like trout, sperm swam in a typical tight helical pattern, but in seawater species sperm motility was more progressive. In amphibian species, sperm velocity was slow, in contrast with some bird species (e.g., ostrich). Meanwhile, in African elephant and some antelope species, fast progressive sperm was evident. In most species, there was a high percentage of morphologically normal sperm, but generally, low percentages were observed for motility, vitality and normal morphology evident in monogamous species. (4) Conclusions: Sperm quality assessment using quantitative methodologies such as CASA motility, FAST analysis, morphology and vitality, as well as more progressive methodologies, assisted in better defining sperm quality-specifically, sperm functionality of high-quality sperm. This approach will assist in the propagation of wildlife species.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
5
|
Characterization of Bottlenose Dolphin (Tursiops truncatus) Sperm Based on Morphometric Traits. BIOLOGY 2021; 10:biology10050355. [PMID: 33922110 PMCID: PMC8143526 DOI: 10.3390/biology10050355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Dolphins are one of the best adapted aquatic mammalians in captivity. While these animals can reproduce naturally in aquaria, many aspects related to their reproduction are still unknown. Their behavior, sociability with humans and ability to learn make dolphins ideal subjects for investigating their reproduction features for conservation programs aimed at this aquatic species and others. It is known that dolphins use a multi-male mating strategy, in which sperm competition could play a fundamental role. This study aims to characterize the shape and dimensions of dolphin sperm from two mature males and putatively classifies them into subpopulations. Moreover, the influence of sex hormone levels (testosterone) and refrigeration (temperature and storage period) with sperm dimension was evaluated. The results indicated that sperm dimensions and shape differed between the two males studied and that the sperm of both males could be classified into two subpopulations depending on their dimensions. Moreover, both testosterone levels and refrigeration were seen to influence sperm dimensions. This investigation provides new insights into sperm competition in dolphin species, and the results could be extrapolated to other endangered aquatic mammalian species. Abstract Bottlenose dolphin (Tursiops truncatus) males follow many reproductive strategies to ensure their paternity. However, little is known about the sperm traits, including morphometric features, that contribute to their reproductive success. Our aim was to study dolphin sperm morphometry (a total of 13 parameters) in two adult males to evaluate (i) presumptive sperm subpopulations, (ii) the correlation of sperm morphometry with testosterone levels and (iii) the effect of refrigerated storage on the sperm morphometry. Sperm populations were classified into four principal components (PCs) based on morphometry (>94% of cumulative variance). The PCs clustered into two different sperm subpopulations, which differed between males. Furthermore, the levels of serum testosterone were positively correlated with the length of the midpiece but negatively correlated with head width and the principal piece, flagellum and total sperm lengths. Most of the sperm morphometric parameters changed during the storage period (day 1 vs. day 7), but only the principal piece length was affected by the storage temperature (5 °C vs. 15 °C). This is the first study to identify dolphin sperm subpopulations based on morphometry and the influence of serum testosterone and refrigeration on sperm morphometry.
Collapse
|