1
|
Cai P, Zhang W, Jiang S, Xiong Y, Qiao H, Jin S, Fu H. A study on the functional role of the DHCR24 gene in gonadal differentiation and development of Macrobrachium nipponense. Sci Rep 2024; 14:29443. [PMID: 39604403 PMCID: PMC11603370 DOI: 10.1038/s41598-024-80651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Sex differentiation in crustaceans is a complex process influenced by various factors, including the androgenic gland and sex-related genes. This study characterized the role of the Mn-DHCR24 gene in the oriental river prawn (Macrobrachium nipponense). We used bioinformatics to analyze sequence features and phylogenetic relationships of a single Mn-DHCR24 gene. The expression patterns of Mn-DHCR24 across different tissues and developmental stages were determined by real-time PCR, and its localization in testis was determined by in situ hybridization. RNA interference was used to knock down Mn-DHCR24 expression, followed by examining changes in sex ratio and gonadal development at the PL10 stage. Additionally, an enzyme-linked immunosorbent assay measured 17α-methyltestosterone levels, and tissue sections were used to characterize gonadal development. The results indicated that Mn-DHCR24 was high expression in testis, which was critical for sperm maturation and gonadal differentiation. RNAi experiments showed the role of Mn-DHCR24 during reproductive regulation rather than as a master gene for sex differentiation. This study further showed that Mn-DHCR24 regulated sex and hormone-related genes, influencing steroid biosynthesis pathways. Together, these findings provided valuable insights into the genetic and hormonal mechanisms of gonadal differentiation in M. nipponense, and supported the development of monosex culture technology.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
2
|
Li F, Cui X, Fu C, Wang A. The physiological response of oriental river prawn Macrobrachium nipponense to starvation-induced stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101229. [PMID: 38531153 DOI: 10.1016/j.cbd.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Environmental stresses play critical roles in the physiology of crustaceans. Food deprivation is an important environmental factor and a regular occurrence in both natural aquatic habitats and artificial ponds. However, the underlying physiological response mechanisms to starvation-caused stress in crustaceans are yet to be established. In the present study, the hepatopancreas tissue of Macrobrachium nipponense was transcriptome analyzed and examined for starvation effects on oxidative stress, DNA damage, autophagy, and apoptosis across four fasting stages (0 (control group), 7, 14, and 21 days). These results indicated that a ROS-mediated regulatory mechanism is critical to the entire fasting process. At the initial stage of starvation (fasting 0 d ~ 7 d), ROS concentration increased gradually, activating antioxidant enzymes to protect the cellular machinery from the detrimental effects of oxidative stress triggered by starvation-induced stress. ROS content production (hydrogen peroxide and superoxide anion) then rose continuously with prolonged starvation (fasting 7 d ~ 14 d), reaching peak levels and resulting in autophagy in hepatopancreas cells. During the final stages of starvation (fasting 14 d ~ 21 d), excessive ROS induced DNA damage and cell apoptosis. Furthermore, autophagolysosomes and apoptosis body were further identified with transmission electron microscopy. These findings lay a foundation for further scrutiny of the molecular mechanisms combating starvation-generated stress in M. nipponense and provide fishermen with the theoretical guidance for adopting fasting strategies in M. nipponense aquaculture.
Collapse
Affiliation(s)
- Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Xiaocui Cui
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China.
| |
Collapse
|