1
|
Jin Y, Wang Z, Liang Y, Jiang Y, Yuan F, Zhang T. miRNA‑22‑3p inhibits cell viability and metastasis of nasopharyngeal carcinoma by targeting FOXP1. Oncol Lett 2025; 29:96. [PMID: 39697977 PMCID: PMC11653248 DOI: 10.3892/ol.2024.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with a high incidence rate in certain regions. MicroRNA (miRNA/miR)-22-3p is implicated in the regulation of tumorigenesis and progression. However, the biological role of miRNA-22-3p in the progression of NPC remains unclear. The present study aimed to assess the effects of miRNA-22-3p overexpression on the cell viability and migration of NPC cells. The cell viability and migration of HK-1 cells was evaluated using Transwell, wound healing and Cell Counting Kit-8 assays. To assess the epithelial-mesenchymal transition ability of NPC cells, the expression of E-cadherin, vimentin and N-cadherin was evaluated using western blot analysis. The results revealed expression of miRNA-22-3p was significantly decreased in NPC tissues compared with para-cancerous tissues. Decreased expression of miRNA-22-3p was also observed in NPC cell lines (C666-1 and HK-1). The overexpression of miRNA-22-3p reduced HK-1 cell viability and migration. In addition, a dual luciferase reporter assay revealed that miRNA-22-3p functioned as a molecular sponge for forkhead box protein 1 (FOXP1). Notably, FOXP1 overexpression counteracted the suppressive effects induced by transfection with miRNA-22-3p mimic on HK-1 cell viability and migration. Therefore, these data indicate that miRNA-22-3p may be a clinically valuable biomarker for the therapy of NPC.
Collapse
Affiliation(s)
- Ying Jin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhijun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuanshan Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yiting Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fayang Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
2
|
Verma A, Khan MA, Satrusal SR, Datta D. Emerging role of EZH2 in solid tumor metastasis. Biochim Biophys Acta Rev Cancer 2025; 1880:189253. [PMID: 39722418 DOI: 10.1016/j.bbcan.2024.189253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Cancer cells experience multiple reversible changes during their metastatic spread. Epigenetic reprogramming, being reversible, has emerged as a critical driver of cancer metastasis. Epigenetic modulator Enhancer of Zeste homolog 2 (EZH2) is an important candidate for such reprogramming events. Both EZH2 protein and its catalytic function (H3K27me3) have been shown to promote solid tumor metastasis, although EZH2 functional inhibition has limited impact on primary tumor growth in some cancers. The dichotomous gene regulatory roles of EZH2 and H3K27me3 are currently being investigated to understand how they collectively contribute to promote metastasis. Here, we examine the multifaceted role of EZH2 in modulating solid tumor metastasis and its therapeutic potential.
Collapse
Affiliation(s)
- Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Muqtada Ali Khan
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Saumya Ranjan Satrusal
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Wei L, Mei D, Hu S, Du S. Dual-target EZH2 inhibitor: latest advances in medicinal chemistry. Future Med Chem 2024; 16:1561-1582. [PMID: 39082677 PMCID: PMC11370917 DOI: 10.1080/17568919.2024.2380243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/03/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sijia Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
4
|
Zhou Z, Xu F, Zhang T. Circular RNA COL1A1 promotes Warburg effect and tumor growth in nasopharyngeal carcinoma. Discov Oncol 2024; 15:120. [PMID: 38619648 PMCID: PMC11018599 DOI: 10.1007/s12672-024-00941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE Circular RNAs (circRNAs), pivotal in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), remain a significant point of investigation for potential therapeutic interventions. Our research was driven by the objective to decipher the roles and underlying mechanisms of hsa_circ_0044569 (circCOL1A1) in governing the malignant phenotypes and the Warburg effect in NPC. METHODS We systematically collected samples from NPC tissues and normal nasopharyngeal epithelial counterparts. The expression levels of circCOL1A1, microRNA-370-5p (miR-370-5p), and prothymosin alpha (PTMA) were quantitatively determined using quantitative polymerase chain reaction (qPCR) and Western blotting. Transfections in NPC cell lines were conducted using small interfering RNAs (siRNAs) or vectors carrying the pcDNA 3.1 construct for overexpression studies. We interrogated the circCOL1A1/miR-370-5p/PTMA axis's role in cellular functions through a series of assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide for cell viability, colony formation for growth, Transwell assays for migration and invasion, and Western blotting for protein expression profiling. To elucidate the molecular interactions, we employed luciferase reporter assays and RNA immunoprecipitation techniques. RESULTS Our investigations revealed that circCOL1A1 was a stable circRNA, highly expressed in both NPC tissues and derived cell lines. A correlation analysis with clinical pathological features demonstrated a significant association between circCOL1A1 expression, lymph node metastasis, and the tumor node metastasis staging system of NPC. Functionally, silencing circCOL1A1 led to substantial suppression of cell proliferation, migration, invasion, and metabolic alterations characteristic of the Warburg effect in NPC cells. At the molecular level, circCOL1A1 appeared to modulate PTMA expression by acting as a competitive endogenous RNA or 'sponge' for miR-370-5p, which in turn promoted the malignant characteristics of NPC cells. CONCLUSION To conclude, our findings delineate that circCOL1A1 exerts its oncogenic influence in NPC through the modulation of the miR-370-5p/PTMA signaling axis.
Collapse
Affiliation(s)
- ZeJun Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Fang Xu
- Health Management Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
5
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Zhang W, Nie Q, Zhang X, Huang L, Pang G, Chu J, Yuan X. miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer. Expert Opin Ther Targets 2023; 27:1285-1297. [PMID: 38155599 DOI: 10.1080/14728222.2023.2293750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is involved in the activation of several oncogenic pathways in prostate cancer. However, its upstream trans-signaling pathway remains largely unknown. This work proposes a mechanistic explanation of IL-6's upstream effectors in prostate carcinogenesis. RESEARCH DESIGN & METHODS Samples were harvested to validate the expression of EZH2, miR-26a-5p, and IL-6. Moreover, the protein and its phosphorylation of STAT3 (signal transducer and transcription activator 3) were assessed in prostate cancer cells. We explored the effects of these effectors on malignant phenotypes in vitro and tumor growth in vivo using functional assays. Bioinformatics analysis, dual-luciferase reporter gene assays, and chromatin immunoprecipitation (ChIP) assays were used to determine their binding relationships. RESULTS Overexpression of EZH2 and IL-6, and under expression of miR-26a-5p was observed in prostate cancer. Silencing IL-6 repressed STAT3 to suppress the malignant phenotypes of prostate cancer cells. Mechanistically, EZH2 inhibited miR-26a-5p expression by promoting H3K27 histone methylation, and miR-26a-5p restricted the malignant phenotypes of prostate cancer by targeting IL-6. Ectopic EZH2 expression reduced xenograft growth by inhibiting miR-26a-5p and activating the IL-6/STAT3 axis. CONCLUSION EZH2 May potentially be involved in regulating its expression by recruiting H3K27me3 to the miR-26a-5p promoter region, which could further impact the IL6/STAT3 pathway.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Qiwei Nie
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Xuling Zhang
- Department of Nursing, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Xiaoxu Yuan
- Department of Urology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
7
|
Kuser-Abali G, Zhang Y, Szeto P, Zhao P, Masoumi-Moghaddam S, Fedele CG, Leece I, Huang C, Cheung JG, Ameratunga M, Noguchi F, Andrews MC, Wong NC, Schittenhelm RB, Shackleton M. UHRF1/UBE2L6/UBR4-mediated ubiquitination regulates EZH2 abundance and thereby melanocytic differentiation phenotypes in melanoma. Oncogene 2023; 42:1360-1373. [PMID: 36906655 PMCID: PMC10121471 DOI: 10.1038/s41388-023-02631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Cellular heterogeneity in cancer is linked to disease progression and therapy response, although mechanisms regulating distinct cellular states within tumors are not well understood. We identified melanin pigment content as a major source of cellular heterogeneity in melanoma and compared RNAseq data from high-pigmented (HPCs) and low-pigmented melanoma cells (LPCs), suggesting EZH2 as a master regulator of these states. EZH2 protein was found to be upregulated in LPCs and inversely correlated with melanin deposition in pigmented patient melanomas. Surprisingly, conventional EZH2 methyltransferase inhibitors, GSK126 and EPZ6438, had no effect on LPC survival, clonogenicity and pigmentation, despite fully inhibiting methyltransferase activity. In contrast, EZH2 silencing by siRNA or degradation by DZNep or MS1943 inhibited growth of LPCs and induced HPCs. As the proteasomal inhibitor MG132 induced EZH2 protein in HPCs, we evaluated ubiquitin pathway proteins in HPC vs LPCs. Biochemical assays and animal studies demonstrated that in LPCs, the E2-conjugating enzyme UBE2L6 depletes EZH2 protein in cooperation with UBR4, an E3 ligase, via ubiquitination at EZH2's K381 residue, and is downregulated in LPCs by UHRF1-mediated CpG methylation. Targeting UHRF1/UBE2L6/UBR4-mediated regulation of EZH2 offers potential for modulating the activity of this oncoprotein in contexts in which conventional EZH2 methyltransferase inhibitors are ineffective.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Youfang Zhang
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Pacman Szeto
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Peinan Zhao
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | - Isobel Leece
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jen G Cheung
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Malaka Ameratunga
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Fumihito Noguchi
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miles C Andrews
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mark Shackleton
- Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Alfred Health, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Abstract
The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.
Collapse
|
9
|
Multiomics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Biosci Rep 2023; 43:232355. [PMID: 36545914 PMCID: PMC9842950 DOI: 10.1042/bsr20222230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a significant epigenetic regulator that plays a critical role in the development and progression of cancer. However, the multiomics features and immunological effects of EZH2 in pan-cancer remain unclear. Transcriptome and clinical raw data of pan-cancer samples were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and subsequent data analyses were conducted by using R software (version 4.1.0). Furthermore, numerous bioinformatics analysis databases also reapplied to comprehensively explore and elucidate the oncogenic mechanism and therapeutic potential of EZH2 from pan-cancer insight. Finally, quantitative reverse transcription polymerase chain reaction and immunohistochemical assays were performed to verify the differential expression of EZH2 gene in various cancers at the mRNA and protein levels. EZH2 was widely expressed in multiple normal and tumor tissues, predominantly located in the nucleoplasm. Compared with matched normal tissues, EZH2 was aberrantly expressed in most cancers either at the mRNA or protein level, which might be caused by genetic mutations, DNA methylation, and protein phosphorylation. Additionally, EZH2 expression was correlated with clinical prognosis, and its up-regulation usually indicated poor survival outcomes in cancer patients. Subsequent analysis revealed that EZH2 could promote tumor immune evasion through T-cell dysfunction and T-cell exclusion. Furthermore, expression of EZH2 exhibited a strong correlation with several immunotherapy-associated responses (i.e., immune checkpoint molecules, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) status, and neoantigens), suggesting that EZH2 appeared to be a novel target for evaluating the therapeutic efficacy of immunotherapy.
Collapse
|
10
|
Wang H. Role of EZH2 in adipogenesis and obesity: Current state of the art and implications - A review. Medicine (Baltimore) 2022; 101:e30344. [PMID: 36086687 PMCID: PMC10980444 DOI: 10.1097/md.0000000000030344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is characterized by excessive accumulation of adiposity and has been implicated in a strong predisposition to metabolic disorders and cancer, constituting one of the major public health issues worldwide. The formation of new mature adipocytes through differentiation of progenitor or precursor cells during adipogenesis can lead to the expansion of adipose tissue. Recent studies have revealed that the intrinsic risk of obesity arises not only through genetic variants but also through epigenetic predisposition. Enhancer of zeste homolog 2 (EZH2) is an enzymatic catalytic component of polycomb repressive complex 2 that acts as an epigenetic modulator in the regulation of gene expression. EZH2 can modulate the expression of its target genes by the trimethylation of Lys-27 in histone 3 or methylation of non-histone proteins. Emerging evidence has shown the important role played by EZH2 in adipogenesis and obesity. This review provides the latest knowledge about the involvement of EZH2 in the process of adipogenesis and obesity involving adipocyte differentiation, extract key concepts, and highlight open questions toward a better understanding of EZH2 function and the molecular mechanisms underlying obesity.
Collapse
Affiliation(s)
- Haixia Wang
- Zhejiang Changzheng Vocational and Technical College, Hangzhou, P. R. China
| |
Collapse
|
11
|
Paskeh MDA, Mehrabi A, Gholami MH, Zabolian A, Ranjbar E, Saleki H, Ranjbar A, Hashemi M, Ertas YN, Hushmandi K, Mirzaei S, Ashrafizadeh M, Zarrabi A, Samarghandian S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2022; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefeh Mehrabi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Ehsan Ranjbar
- Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
12
|
Chen G, Wang K, Li G, Wang L, Xiao Y, Chen B. Long Noncoding RNA LAMTOR5-AS1 Interference Affects MicroRNA-506-3p/E2F6-Mediated Behavior of Non-Small Cell Lung Cancer Cells. Oncol Res 2022; 28:945-959. [PMID: 34588094 PMCID: PMC8790135 DOI: 10.3727/096504021x16328213967104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNA LAMTOR5 antisense RNA 1 (LAMTOR5-AS1) has been certified as a risk predictor and diagnostic biomarker of prostate cancer. However, the expression and exact roles of LAMTOR5-AS1 in non-small cell lung cancer (NSCLC) remain unclear. Thus, we measured LAMTOR5-AS1 expression in NSCLC and gauged its clinical value. The detailed roles and downstream working mechanism of LAMTOR5-AS1 in NSCLC were comprehensively unraveled. qRT-PCR was applied to measure gene expression. Functionally, utilizing small interfering RNA, LAMTOR5-AS1 was ablated, and the functional alterations were addressed by means of different experiments. The targeting activities between LAMTOR5-AS1 and microRNA-506-3p (miR-506-3p) and between miR-506-3p and E2F transcription factor 6 (E2F6) were confirmed by RNA immunoprecipitation and luciferase reporter assays. LAMTOR5-AS1 overexpression in NSCLC was verified in TCGA datasets and our own cohort and manifested an evident relationship with poor prognosis. Interference with LAMTOR5-AS1 led to repression of the proliferation, cloning, and metastasis abilities of NSCLC cells in vitro. We further confirmed an obvious increase in LAMTOR5-AS1-silenced NSCLC cell apoptosis. Furthermore, the absence of LAMTOR5-AS1 restricted tumor growth in vivo. Mechanistically, LAMTOR5-AS1 sponged miR-506-3p in NSCLC cells. Furthermore, E2F6, a downstream target of miR-506-3p, was under the control of LAMTOR5-AS1, which was realized by decoying miR-506-3p. Rescue experiments showed that miR-506-3p suppression or E2F6 reintroduction was capable of remitting LAMTOR5-AS1 deficiency-triggered anticarcinogenic actions in NSCLC. Our study confirmed the exact roles of LAMTOR5-AS1 for the first time and revealed that LAMTOR5-AS1 knockdown disrupts the malignancy of NSCLC by targeting the miR-506-3p/E2F6 axis. Targeting the LAMTOR5-AS1/miR-506-3p/E2F6 pathway may be instrumental for managing patients with NSCLC.
Collapse
Affiliation(s)
- Guojie Chen
- *Department of Oncology, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu, P. R. China
| | - Kai Wang
- *Department of Oncology, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu, P. R. China
| | - Guoshu Li
- †Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Leidong Wang
- ‡Department of Pathology, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Yangyang Xiao
- §Department of Clinical Laboratory, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Bo Chen
- ¶Department of Infectious Disease, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu, P. R. China
| |
Collapse
|
13
|
Yu H, Zhang C, Li W, Sun X, Liu Q, Wang D. Nano-Coated si-SNHG14 Regulated PD-L1 Expression and Decreased Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma Cells. J Biomed Nanotechnol 2021; 17:1993-2002. [PMID: 34706799 DOI: 10.1166/jbn.2021.3162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the expression characteristics of long non-coding RNA SNHG14 in nasopharyngeal carcinoma (NPC) and its effects on epithelial-mesenchymal transition and development of nano-coated si-SNHG14 as an anti-tumor agent. The SNHG14 expression in cancerous and adjacent non-cancerous tissues was monitored using reverse transcriptionpolymerase chain reaction (RT-PCR). Gain- and loss-of-function experiments tested the regulation of SNHG14, miR- 5590-3p, and ZEB1 on PD-L1. The binding association between the above three factors was verified using bioinformatics analysis. EMT-related E-cadherin, N-cadherin, and Vimentin were tested using Western blot. Animal experiments in nude mice verified the function of SNHG14 in the EMT of NPC in vivo. The nano-coated si-SNHG14 was developed as an anti-tumor agent and was verified NPC cell in vitro. SNHG14 was upregulated in NPC tissues. Knocking down SNHG14 markedly inhibited the EMT of NPC. Additionally, the expression of ZEB1 was positively related to that of the SNHG14, while it was inversely correlated with that of miR-5590-3p. Moreover, ZEB1 transcription upregulated PD-L1 and promoted the EMT, while SNHG14 could accelerate the EMT of NPC in vivo by regulating the PD-1 and PD-L1. SNHG14-miR-5590- 3p-ZEB1 positively regulated PD-L1 and facilitate the EMT of NPC. Nano-coated si-SNHG14 significantly downregulated PD-L1 expression and decreased EMT.
Collapse
Affiliation(s)
- Haoran Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Chen Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Wanpeng Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Quan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, PR China
| |
Collapse
|
14
|
MicroRNA-384 inhibits nasopharyngeal carcinoma growth and metastasis via binding to Smad5 and suppressing the Wnt/β-catenin axis. Cytotechnology 2021; 73:203-215. [PMID: 33911345 PMCID: PMC8035371 DOI: 10.1007/s10616-021-00458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/05/2021] [Indexed: 01/10/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a major otorhinolaryngological disease with limited effective therapeutic options. This work focused on the function of microRNA-384 (miR-384) on the NPC pathogenesis and the molecules involved. miR-384 expression in cancer tissues and cells was detected. Gain- and loss-of-functions of miR-384 were performed to identify its role in NPC progression. The target mRNA of miR-384 was predicted on an online system and validated through a luciferase reporter assay. The activity of Wnt/β-catenin signaling was detected. Consequently, miR-384 was found to be poorly expressed in NPC tissues and cell lines and was linked to unfavorable survival rates in patients. Overexpression of miR-384 in 6-10B cells suppressed growth, migration, invasion and resistance to apoptosis of cells, but inverse trends were presented in C6661 cells where miR-384 was downregulated. miR-384 targeted Smad5 mRNA. Upregulation of Smad5 counteracted the roles of miR-384 mimic in cells. The NPC-inhibiting effects of miR-384 mimic were also blocked by Wnt/β-catenin activation. To conclude, miR-384 targets Smad5 and inactivates the Wnt/β-catenin pathway, which exerts a suppressing role in NPC cell behaviors as well as tumor growth in vivo. The findings may offer novel thoughts into NPC therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00458-3.
Collapse
|
15
|
Haque I, Kawsar HI, Motes H, Sharma M, Banerjee S, Banerjee SK, Godwin AK, Huang CH. Downregulation of miR-506-3p Facilitates EGFR-TKI Resistance through Induction of Sonic Hedgehog Signaling in Non-Small-Cell Lung Cancer Cell Lines. Int J Mol Sci 2020; 21:E9307. [PMID: 33291316 PMCID: PMC7729622 DOI: 10.3390/ijms21239307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs). Treatment resistance remains the primary obstacle to the successful treatment of NSCLC. Although drug resistance mechanisms have been studied extensively in NSCLC, the regulation of these mechanisms has not been completely understood. Recently, increasing numbers of microRNAs (miRNAs) are implicated in EGFR-TKI resistance, indicating that miRNAs may serve as novel targets and may hold promise as predictive biomarkers for anti-EGFR therapy. MicroRNA-506 (miR-506) has been identified as a tumor suppressor in many cancers, including lung cancer; however, the role of miR-506 in lung cancer chemoresistance has not yet been addressed. Here we report that miR-506-3p expression was markedly reduced in erlotinib-resistant (ER) cells. We identified Sonic Hedgehog (SHH) as a novel target of miR-506-3p, aberrantly activated in ER cells. The ectopic overexpression of miR-506-3p in ER cells downregulates SHH signaling, increases E-cadherin expression, and inhibits the expression of vimentin, thus counteracting the epithelial-mesenchymal transition (EMT)-mediated chemoresistance. Our results advanced our understanding of the molecular mechanisms underlying EGFR-TKI resistance and indicated that the miR-506/SHH axis might represent a novel therapeutic target for future EGFR mutated lung cancer treatment.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hameem I Kawsar
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hannah Motes
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Kirksville College of Osteopathic Medicine, Andrew Taylor Still University, Jefferson St, Kirksville, MO 63501, USA
| | - Mukut Sharma
- Research Service, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chao H Huang
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Abstract
Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.
Collapse
Affiliation(s)
- Ran Duan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenfang Du
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
17
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
He L, Liao L, Du L. miR‑144‑3p inhibits tumor cell growth and invasion in oral squamous cell carcinoma through the downregulation of the oncogenic gene, EZH2. Int J Mol Med 2020; 46:828-838. [PMID: 32626925 PMCID: PMC7307824 DOI: 10.3892/ijmm.2020.4638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence demonstrates that microRNAs (miRNAs or miRs) play important roles in the development and progression of human malignancies, including oral squamous cell carcinoma (OSCC); however, the unique roles of miRNAs are not yet fully understood in OSCC. The present study aimed to identify novel miRNAs associated with OSCC and to elucidate their functions. Based on a micro-array analysis, miR-144-3p was found to be one of the most significantly downregulated miRNAs in OSCC tissues. Its low expression was closely associated with tumor size, differentiation and lymph node metastasis. Functionally, miR-144-3p overexpression suppressed proliferation, promoted apoptosis, and suppressed the invasion and migration of OSCC cells. In addition, enhancer of zeste homolog 2 (EZH2), a well-known oncogene, was proven to be a direct target of miR-144-3p, and its protein expression was negatively regulated by miR-144-3p. Moreover, EZH2 expression was increased, and inversely correlated with the miR-144-3p level in OSCC tissues. Notably, EZH2 knockdown inhibited cell proliferation, promoted cell apoptosis, and suppressed the invasion and migration of OSCC cells, whereas EZH2 overexpression partially reversed the anticancer effects mediated by miR-144-3p overexpression. On the whole, the findings of the present study suggest that miR-144-3p functions as a tumor suppressor by targeting the EZH2 oncogene, and may thus be considered as a potential diagnostic and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Longlong He
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lifan Liao
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Liangzhi Du
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|