1
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
2
|
Rai A, Greening DW, Xu R, Suwakulsiri W, Simpson RJ. Exosomes Derived from the Human Primary Colorectal Cancer Cell Line SW480 Orchestrate Fibroblast-Led Cancer Invasion. Proteomics 2021; 20:e2000016. [PMID: 32438511 DOI: 10.1002/pmic.202000016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/14/2020] [Indexed: 12/11/2022]
Abstract
In localized tumors, basement membrane (BM) prevents invasive outgrowth of tumor cells into surrounding tissues. When carcinomas become invasive, cancer cells either degrade BM or reprogram stromal fibroblasts to breach BM barrier and lead invasion of cancer cells into surrounding tissues in a process called fibroblast-led invasion. However, tumor-derived factors orchestrating fibroblast-led invasion remain poorly understood. Here it is shown that although early-stage primary colorectal adenocarcinoma (SW480) cells are themselves unable to invade Matrigel matrix, they secrete exosomes that reprogram normal fibroblasts to acquire de novo capacity to invade matrix and lead invasion of SW480 cells. Strikingly, cancer cells follow leading fibroblasts as collective epithelial-clusters, thereby circumventing need for epithelial to mesenchymal transition, a key event associated with invasion. Moreover, acquisition of pro-invasive phenotype by fibroblasts treated with SW480-derived exosomes relied on exosome-mediated MAPK pathway activation. Mass spectrometry-based protein profiling reveals that cancer exosomes upregulate fibroblasts proteins implicated in focal adhesion (ITGA2/A6/AV, ITGB1/B4/B5, EGFR, CRK), regulators of actin cytoskeleton (RAC1, ARF1, ARPC3, CYFIP1, NCKAP1, ICAM1, ERM complex), and signalling pathways (MAPK, Rap1, RAC1, Ras) important in pro-invasive remodeling of extracellular matrix. Blocking tumor exosome-mediated signaling to fibroblasts therefore represents an attractive therapeutic strategy in restraining tumors by perturbing stroma-driven invasive outgrowth.
Collapse
Affiliation(s)
- Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Wittaya Suwakulsiri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
3
|
Flores K, Yadav SS, Katz AA, Seger R. The Nuclear Translocation of Mitogen-Activated Protein Kinases: Molecular Mechanisms and Use as Novel Therapeutic Target. Neuroendocrinology 2019; 108:121-131. [PMID: 30261516 DOI: 10.1159/000494085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades are central signaling pathways that play a central role in the regulation of most stimulated cellular processes including proliferation, differentiation, stress response and apoptosis. Currently 4 such cascades are known, each termed by its downstream MAPK components: the extracellular signal-regulated kinase 1/2 (ERK1/2), cJun-N-terminal kinase (JNK), p38 and ERK5. One of the hallmarks of these cascades is the stimulated nuclear translocation of their MAPK components using distinct mechanisms. ERK1/2 are shuttled into the nucleus by importin7, JNK and p38 by a dimer of importin3 with either importin9 or importin7, and ERK5 by importin-α/β. Dysregulation of these cascades often results in diseases, including cancer and inflammation, as well as developmental and neurological disorders. Much effort has been invested over the years in developing inhibitors to the MAPK cascades to combat these diseases. Although some inhibitors are already in clinical use or clinical trials, their effects are hampered by development of resistance or adverse side-effects. Recently, our group developed 2 myristoylated peptides: EPE peptide, which inhibits the interaction of ERK1/2 with importin7, and PERY peptide, which prevents JNK/p38 interaction with either importin7 or importin9. These peptides block the nuclear translocation of their corresponding kinases, resulting in prevention of several cancers, while the PERY peptide also inhibits inflammation-induced diseases. These peptides provide a proof of concept for the use of the nuclear translocation of MAPKs as therapeutic targets for cancer and/or inflammation.
Collapse
Affiliation(s)
- Karen Flores
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot,
| |
Collapse
|
4
|
Wei XF, Feng YF, Chen QL, Zhang QK. CDA gene silencing regulated the proliferation and apoptosis of chronic myeloid leukemia K562 cells. Cancer Cell Int 2018; 18:96. [PMID: 30002603 PMCID: PMC6038203 DOI: 10.1186/s12935-018-0587-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background As a disease of hematopoietic stem cell, chronic myeloid leukemia (CML) possesses unique biological and clinical features. However, the biologic mechanism underlying its development remains poorly understood. Thus, the objective of the present study is to discuss the effect of cytidine deaminase (CDA) gene silencing on the apoptosis and proliferation of CML K562 cells. Methods CDA mRNA expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzymatic activity of CDA was measured by a nuclide liquid scintillation method. RT-qPCR and Western blot analysis were used to detect CDA mRNA and protein expression. Cell proliferation, apoptosis and cell cycle were measured by CCK-8 assay and flow cytometry. The expression of proteins relevant to cell proliferation, apoptosis and cell cycle was measured by Western blot analysis. Tumor xenografts were implanted in nude mice to verify the effect of CDA silencing on tumor growth in vivo. Results CML and AL patients showed increased mRNA expression and enzymatic activity of CDA. Compared with the blank group, the mRNA and protein expression of CDA in the shRNA-1 and shRNA-2 groups decreased significantly. As a result, the proliferation of K562 cells was inhibited after CDA silencing and the cells were mainly arrested in S and G2 phases, while the apoptosis rate of these cells was increased. In addition, CDA gene silencing in K562 cells led to down-regulated p-ERK1/2, t-AKT, p-AKT and BCL-2 expression and up-regulated expression of P21, Bax, cleaved caspase-3/total caspase-3 and cleaved PARP/total PARP. Finally, CDA gene silencing inhibited tumor growth. Conclusion Our study demonstrated that CDA gene silencing could inhibit CML cell proliferation and induce cell apoptosis. Therefore, CDA gene silencing may become an effective target for the treatment of leukemia.
Collapse
Affiliation(s)
- Xiao-Fang Wei
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| | - You-Fan Feng
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| | - Qiao-Lin Chen
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| | - Qi-Ke Zhang
- Department of Hematology, Gansu Provincial Hospital, No. 204, Donggang West Road, Lanzhou, 730000 Gansu People's Republic of China
| |
Collapse
|
5
|
Moschos SJ, Sullivan RJ, Hwu WJ, Ramanathan RK, Adjei AA, Fong PC, Shapira-Frommer R, Tawbi HA, Rubino J, Rush TS, Zhang D, Miselis NR, Samatar AA, Chun P, Rubin EH, Schiller J, Long BJ, Dayananth P, Carr D, Kirschmeier P, Bishop WR, Deng Y, Cooper A, Shipps GW, Moreno BH, Robert L, Ribas A, Flaherty KT. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight 2018; 3:92352. [PMID: 29467321 DOI: 10.1172/jci.insight.92352] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Constitutive activation of ERK1/2 occurs in various cancers, and its reactivation is a well-described resistance mechanism to MAPK inhibitors. ERK inhibitors may overcome the limitations of MAPK inhibitor blockade. The dual mechanism inhibitor SCH772984 has shown promising preclinical activity across various BRAFV600/RAS-mutant cancer cell lines and human cancer xenografts. METHODS We have developed an orally bioavailable ERK inhibitor, MK-8353; conducted preclinical studies to demonstrate activity, pharmacodynamic endpoints, dosing, and schedule; completed a study in healthy volunteers (P07652); and subsequently performed a phase I clinical trial in patients with advanced solid tumors (MK-8353-001). In the P07652 study, MK-8353 was administered as a single dose in 10- to 400-mg dose cohorts, whereas in the MK-8353-001 study, MK-8353 was administered in 100- to 800-mg dose cohorts orally twice daily. Safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity were analyzed. RESULTS MK-8353 exhibited comparable potency with SCH772984 across various preclinical cancer models. Forty-eight patients were enrolled in the P07652 study, and twenty-six patients were enrolled in the MK-8353-001 study. Adverse events included diarrhea (44%), fatigue (40%), nausea (32%), and rash (28%). Dose-limiting toxicity was observed in the 400-mg and 800-mg dose cohorts. Sufficient exposure to MK-8353 was noted that correlated with biological activity in preclinical data. Three of fifteen patients evaluable for treatment response in the MK-8353-001 study had partial response, all with BRAFV600-mutant melanomas. CONCLUSION MK-8353 was well tolerated up to 400 mg twice daily and exhibited antitumor activity in patients with BRAFV600-mutant melanoma. However, antitumor activity was not particularly correlated with pharmacodynamic parameters. TRIAL REGISTRATION ClinicalTrials.gov NCT01358331. FUNDING Merck Sharp & Dohme Corp., a subsidiary of Merck & Co. Inc., and NIH (P01 CA168585 and R35 CA197633).
Collapse
Affiliation(s)
- Stergios J Moschos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ramesh K Ramanathan
- Translational Genomics Research Institute, Phoenix, Arizona, USA; Virginia G. Piper Cancer Center, Scottsdale, Arizona, USA
| | - Alex A Adjei
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Peter C Fong
- The University of Auckland and Auckland City Hospital, Auckland, New Zealand
| | | | - Hussein A Tawbi
- University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | - Da Zhang
- Merck & Co. Inc., Kenilworth, New Jersey, USA
| | | | | | | | | | | | | | | | - Donna Carr
- Merck & Co. Inc., Kenilworth, New Jersey, USA
| | | | | | - Yongqi Deng
- Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Alan Cooper
- Merck & Co. Inc., Kenilworth, New Jersey, USA
| | | | - Blanca Homet Moreno
- Jonsson Comprehensive Cancer Center at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Lidia Robert
- Jonsson Comprehensive Cancer Center at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
7
|
Wang Y, Zhang A, Lu S, Pan X, Jia D, Yu W, Jiang Y, Li X, Wang X, Zhang J, Hou L, Sun Y. Adenosine 5'-monophosphate-induced hypothermia inhibits the activation of ERK1/2, JNK, p38 and NF-κB in endotoxemic rats. Int Immunopharmacol 2014; 23:205-10. [PMID: 25218163 DOI: 10.1016/j.intimp.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
Many studies have shown that LPS mainly activates four signal transduction pathways to induce inflammation, namely the p38, ERK1/2, JNK and IKK/NF-κB pathways. Studies have demonstrated that 5'-AMP-induced hypothermia (AIH) exhibits high anti-inflammatory capabilities. In this study, we explore that how AIH inhibits the inflammatory response. Wistar rats were divided into five groups: a control group, an LPS group, a 5'-AMP pre-treatment group, a 5'-AMP post-treatment group and a 5'-AMP group. For each group, plasma and lung were collected from the rats at 6h and 12h after LPS injection. ELISA assays were used to detect plasma levels of CD14, CRP and MCP-1. Inflammatory pathway activation and TLR4 expression were assayed separately by Western blot analysis and immunohistochemistry. Our results showed that rats treated with AIH either before or after an LPS-challenge had a significant decrease in plasma levels of CD14, CRP and TLR4 compared with rats that received LPS only. Western blot analysis showed that AIH inhibited the activation of extracellular signal-regulated kinases (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) and NF-κB in inflammatory rats. Our study concluded that AIH attenuated LPS-induced inflammation mainly by inhibiting activation on the ERK1/2, p38, JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yunlong Wang
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Aihua Zhang
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shulai Lu
- Stomatological Department, Qingdao Municipal Hospital, Qingdao, China
| | - Xinting Pan
- ICU, The Affiliated Hospital of Medical College, 16 Jiangsu Road, Qingdao, China
| | - Dongmei Jia
- Pathology Department, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjuan Yu
- Pathology Department, The Affiliated Hospital of Medical College Qingdao University, China
| | - Yanxia Jiang
- Pathology Department, The Affiliated Hospital of Medical College Qingdao University, China
| | - Xinde Li
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Xuefeng Wang
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Jidong Zhang
- Department of Cardiology, The Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China.
| | - Yunbo Sun
- ICU, The Affiliated Hospital of Medical College, 16 Jiangsu Road, Qingdao, China.
| |
Collapse
|
8
|
Abstract
Neuroblastoma (NB) is the most common extracranial malignant solid tumors of childhood, and the majority of these high-risk tumors is resistant to nearly all the treatments and has a significantly worse outcome. The mammalian target of rapamycin (mTOR) plays a critical role in oncogenesis and cancer progression of many tumors. This review will describe the function of mTOR, its genetic regulation in pediatric neuroblastoma, and its value as a target for inhibition by anticancer agents for patients with NB.
Collapse
Affiliation(s)
- Hong Mei
- 1Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
9
|
Jiang MC, Yeh CM, Tai CJ, Chen HC, Lin SH, Su TC, Shen SC, Lee WR, Liao CF, Li LT, Lee CH, Chen YC, Yeh KT, Chang CC. CSE1L modulates Ras-induced cancer cell invasion: correlation of K-Ras mutation and CSE1L expression in colorectal cancer progression. Am J Surg 2013; 206:418-27. [PMID: 23806821 DOI: 10.1016/j.amjsurg.2012.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/09/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ras plays an important role in colorectal cancer progression. CSE1L (chromosome segregation 1-like) gene maps to 20q13, a chromosomal region that correlates with colorectal cancer development. We investigated the association of CSE1L with Ras in colorectal cancer progression. METHODS The effect of CSE1L on metastasis-stimulating activity of Ras was studied in an animal model with tumor cells expressing CSE1L-specific shRNA and v-H-Ras. CSE1L expression was evaluated by the immunohistochemical analysis of 127 surgically resected colorectal tumors. K-Ras mutations were analyzed by direct sequencing. RESULTS CSE1L knockdown reduced Ras-induced metastasis of B16F10 melanoma cells in C57BL/6 mice. v-H-Ras expression altered the cellular trafficking of CSE1L and increased CSE1L secretion. Most colorectal tumors were positive for CSE1L staining (98.4%, 125 of 127). Colorectal tumors with K-Ras mutation or high cytoplasmic CSE1L expression were correlated with T status (depth of tumor penetration; P = .004), stage (P = .004), and lymph node metastasis (P = .019). CONCLUSIONS CSE1L may be a target for treating Ras-associated tumors. Analysis of K-Ras mutation and CSE1L expression may provide valuable clinical and pathological information to aid in the determination of treatment options for colorectal cancer.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Hsing-Yi District, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sundar J, Gnanasekar M. Can dehydroepiandrostenedione (DHEA) target PRL-3 to prevent colon cancer metastasis? Med Hypotheses 2013; 80:595-7. [PMID: 23462371 DOI: 10.1016/j.mehy.2013.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) is a frequently diagnosed cancer and causing significant mortality in the patients. Metastasis caused by CRC is mainly responsible for this cancer-related deaths. Despite recent advancements in the treatment methods, prognosis remains poor. Therefore, effective treatment strategies need to be designed for successful management of this disease. Dehydroepiandrostenedione (DHEA), a 17-ketosteroid hormone produced by adrenal glands, gonads and including gastrointestinal tract is required for several physiological processes. Deregulation of DHEA levels leads to various disease conditions including cancer. In fact, several experimental studies strongly suggest that DHEA could be used as a chemopreventive agent against colon cancer. Prenlyation of certain membrane proteins such as phosphatase of regenerating liver-3 (PRL-3) is crucial for metastatic progression of colon cancer cells. The ability of DHEA to target prenylation pathway could be utilized to inhibit PRL-3 prenylation for successful prevention of CRC metastases. As DHEA is a widely consumed drug for various ailments, incorporation of DHEA in the treatment regimen may be beneficial to prevent or delay the occurrence of metastasis resulting from CRC.
Collapse
Affiliation(s)
- Jyotsna Sundar
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | | |
Collapse
|
11
|
Liu LJ, Liu LQ, Bo T, Li SJ, Zhu Z, Cui RR, Mao DA. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway. Int J Endocrinol 2013; 2013:786574. [PMID: 23843790 PMCID: PMC3694486 DOI: 10.1155/2013/786574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/31/2013] [Accepted: 04/10/2013] [Indexed: 12/15/2022] Open
Abstract
Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs) apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10(-10)-10(-6) M puerarin and reached the maximal antiapoptotic effect at the concentration of 10(-8) M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10(-7) M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.
Collapse
Affiliation(s)
- Ling-juan Liu
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Li-qun Liu
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Tao Bo
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Shi-jun Li
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Zhen Zhu
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Rong-rong Cui
- Institute of Metabolism and Endocrinology, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
- *Rong-rong Cui: and
| | - Ding-an Mao
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
- *Ding-an Mao:
| |
Collapse
|