1
|
Marando A, Di Blasi E, Tucci F, Aquilano MC, Bonoldi E. DOG1 expression in neuroendocrine neoplasms: Potential applications and diagnostic pitfalls. Pathol Res Pract 2023; 248:154623. [PMID: 37331184 DOI: 10.1016/j.prp.2023.154623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Neuroendocrine neoplasms represent a heterogeneous group of rare tumors, more frequently arising from gastroenteropancreatic tract and lungs. At the time of diagnosis, 20% of cases are metastatic, and 10% of cases are considered as cancer of unknown primary origin. Several immunohistochemical markers are routinely used to confirm the neuroendocrine differentiation, first among all Synaptophysin and Chromogranin-A; on the other hand, different immunohistochemical markers are used to establish primary anatomical site, as TTF1, CDX2, Islet-1 and Calcitonin, but no marker is available in order to distinguish among different sites of the digestive tract. DOG1 (discovered on GIST-1) is a gene normally expressed in interstitial cells of Cajal and, in routine practice, DOG1 immunostaining is used in diagnosis of GIST (gastrointestinal stromal tumor). DOG1 expression has been described in several neoplasms other than GIST, both in mesenchymal and epithelial neoplasms. In the present study, DOG1 immunostaining has been performed in a large cohort of neuroendocrine neoplasms, including neuroendocrine tumors and neuroendocrine carcinomas, in order to evaluate frequency, intensity and pattern of expression in different anatomical site and in different tumor grade. DOG1 expression was detected in a large percentage of neuroendocrine tumors, with statistically significant association between DOG1 expression and gastrointestinal tract neuroendocrine tumors. As a consequence, DOG1 could be included in marker panel for the identification of primary site in neuroendocrine metastases of unknown primary origin; moreover, these results recommend careful evaluation of DOG1 expression in gastrointestinal neoplasms, in particular in differential diagnosis between epithelioid GIST and neuroendocrine tumors.
Collapse
Affiliation(s)
- A Marando
- Department of Surgical Pathology, Niguarda Hospital, Milano, Italy.
| | - E Di Blasi
- School of Pathology, University of Milan, Milan, Italy
| | - F Tucci
- School of Pathology, University of Milan, Milan, Italy
| | - M C Aquilano
- Department of Surgical Pathology, Niguarda Hospital, Milano, Italy
| | - E Bonoldi
- Department of Surgical Pathology, Niguarda Hospital, Milano, Italy
| |
Collapse
|
2
|
Suster DI, Mejbel H, Mackinnon AC, Suster S. Desmoplastic Adamantinoma-like Thymic Carcinoma: Clinicopathologic, Immunohistochemical, and Molecular Study of 5 Cases. Am J Surg Pathol 2022; 46:1722-1731. [PMID: 35993584 DOI: 10.1097/pas.0000000000001947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Five cases of a heretofore unreported rare variant of thymic carcinoma characterized by a striking resemblance to adamantinoma of the mandible are described. The tumors occurred in 4 women and 1 man aged 58 to 76 years (mean: 67.8 y); they arose in the anterior mediastinum and measured from 5.3 to 12.0 cm in greatest diameter (mean: 8.9 cm). Presenting symptoms included chest pain, shortness of breath, and in 2 patients, pleural effusion. One tumor was asymptomatic and discovered incidentally. Histologically, the tumors were extensively desmoplastic, and the cellular proliferation was characterized by multiple islands of squamous epithelium with striking peripheral palisading of nuclei and central areas containing clear cells resembling a stellate reticulum. Areas of preexisting spindle cell thymoma were identified in 2 cases; these areas gradually merged with the higher-grade component of the lesion. Cystic changes were noted in 3 cases. Immunohistochemical studies in 3 cases showed the tumor cells were positive for cytokeratins, p40 and p63, and all showed a high proliferation rate (>50% nuclear positivity) with Ki-67. Next-generation sequencing was performed in 2 cases that showed amplification of the AKT1 gene (copy numbers 6 and 13). Clinical follow-up in 3 patients showed recurrence and metastasis after 1 and 2 years; 1 patient passed away 2 years after diagnosis due to the tumor. Desmoplastic adamantinoma-like thymic carcinoma represents an unusual histologic variant of thymic carcinoma that needs to be distinguished from metastases from similar tumors to the mediastinum.
Collapse
Affiliation(s)
- David I Suster
- Department of Pathology, Rutgers University New Jersey Medical School, Newark, NJ
| | - Haider Mejbel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Saul Suster
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Chloride Channels and Transporters: Roles beyond Classical Cellular Homeostatic pH or Ion Balance in Cancers. Cancers (Basel) 2022; 14:cancers14040856. [PMID: 35205604 PMCID: PMC8870652 DOI: 10.3390/cancers14040856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Roles of chloride-associated transporters have been raised in various cancers. Although complicated ion movements, crosstalk among channels/transporters through homeostatic electric regulation, difficulties with experimental implementation such as activity measurement of intracellular location were disturbed to verify the precise modulation of channels/transporters, recently defined cancerous function and communication with tumor microenvironment of chloride channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-associated transporters as membrane-associated components of chloride movement, regulations of transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member 206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and chloride-bicarbonate exchangers are discussed. Abstract The canonical roles of chloride channels and chloride-associated transporters have been physiologically determined; these roles include the maintenance of membrane potential, pH balance, and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative processes. However, chloride channels/transporters also play other roles, beyond these classical function, in cancerous tissues and under specific conditions. Here, we focused on the chloride channel-associated cancers and present recent advances in understanding the environments of various types of cancer caused by the participation of many chloride channel or transporters families and discuss the challenges and potential targets for cancer treatment. The modulation of chloride channels/transporters might promote new aspect of cancer treatment strategies.
Collapse
|
4
|
Jansen K, Farahi N, Büscheck F, Lennartz M, Luebke AM, Burandt E, Menz A, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Lebok P, Sauter G, Simon R, Uhlig R, Wilczak W, Jacobsen F, Minner S, Krech R, Clauditz T, Bernreuther C, Dum D, Krech T, Marx A, Steurer S. DOG1 expression is common in human tumors: A tissue microarray study on more than 15,000 tissue samples. Pathol Res Pract 2021; 228:153663. [PMID: 34717148 DOI: 10.1016/j.prp.2021.153663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023]
Abstract
DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n = 1002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p < 0.0001) and absence of HPV infection in squamous cell carcinomas (p = 0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.
Collapse
Affiliation(s)
- Kristina Jansen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagina Farahi
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
6
|
Xu H, Jiang W, Zhu F, Zhu C, Wei J, Wang J. Expression of Wntless in colorectal carcinomas is associated with invasion, metastasis, and poor survival. APMIS 2016; 124:522-8. [PMID: 27102079 DOI: 10.1111/apm.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Hanfeng Xu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Wen Jiang
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Fang Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Chuandong Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Juan Wei
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Jiandong Wang
- Department of Pathology; Jinling Hospital; Nanjing China
| |
Collapse
|