1
|
Hassan AF, Hussein O, Al-Barazenji T, Allouch A, Kamareddine L, Malki A, Moustafa AA, Khalil A. The effect of novel nitrogen-based chalcone analogs on colorectal cancer cells: Insight into the molecular pathways. Heliyon 2024; 10:e27002. [PMID: 38463818 PMCID: PMC10923686 DOI: 10.1016/j.heliyon.2024.e27002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In colorectal cancer (CRC), aberrations in KRAS are associated with aggressive tumorigenesis and an overall low survival rate because of chemoresistance and adverse effects. Ergo, complementary, and integrative medicines are being considered for CRC treatment. Among which is the use of natural chalcones that are known to exhibit anti-tumor activities in KRAS mutant CRC subtypes treatment regimens. Consequently, we examine the effect of two novel compounds (DK13 and DK14) having chalcones with nitrogen mustard moiety on CRC cell lines (HCT-116 and LoVo) with KRAS mutation. These compounds were synthesized in our lab and previously reported to exhibit potent activity against breast cancer cells. Our data revealed that DK13 and DK14 treatment suppress cell growth, disturb the progression of cell cycle, and trigger apoptosis in CRC cell lines. Besides, treatment with both compounds impedes cell invasion and colony formation in both cell lines as compared to 5-FU; this is accompanied by up and down regulations of E-cadherin and Vimentin, respectively. At the molecular level, both compounds deregulate the expression and phosphorylation of β-catenin, Akt and mTOR, which are the main likely molecular mechanisms underlying these biological occurrences. Our findings present DK13 and DK14 as novel chemotherapies against CRC, through β-catenin/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Arij Fouzat Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ola Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Allouch
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Ala‐Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Oncology Department, McGill University, Montreal, QC, Canada
| | - Ashraf Khalil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Han D, Xu Y, Peng WP, Feng F, Wang Z, Gu C, Zhou X. Citrus Alkaline Extracts Inhibit Senescence of A549 Cells to Alleviate Pulmonary Fibrosis via the β-Catenin/P53 Pathway. Med Sci Monit 2021; 27:e928547. [PMID: 33707405 PMCID: PMC7962417 DOI: 10.12659/msm.928547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease related to aging, which has become increasingly prevalent as the population has aged. However, there remains no effective treatment for the disease. Alveolar epithelial type II cell (AEC II) senescence plays an important role in the occurrence and development of IPF. Therefore, enhancing our understanding of aging AEC IIs might facilitate the development of a new therapeutic strategy for the prevention and treatment of IPF. The aim of this study was to investigate the effect of citrus alkaline extracts (CAE) on senescence in A549 cells and elucidate the mechanism by which CAE function. MATERIAL AND METHODS Adriamycin RD (ARD) induces the senescence of A549 cells. Relevant indicators were identified following administration of 3 concentrations of CAE (50 μg/mL, 100 μg/mL, and 200 μg/mL) to A549 cells. RESULTS CAE inhibited senescence in ARD-induced A549 cells. It inhibited p16, p21, p53, and a senescence-associated secretory phenotype, and reduced expression of the senescence-related positive cells of ß-galactosidase. Further study revealed that activation of the ß-catenin signaling pathway is closely associated with p53. CAE inhibited senescence in A549 cells via the ß-catenin/p53 pathway. Further, inhibition of b-catenin was associated with reduced expression levels of p53 and p21, and the anti-aging effects of CAE were enhanced. When expression of p53 was inhibited, expression levels of ß-catenin also tended to decrease. CONCLUSIONS In summary, our study showed that CAE can inhibit aging in A549 cells to alleviate pulmonary fibrosis, and thus limit the secretion of the extracellular matrix and collagen in lung fibroblasts.
Collapse
Affiliation(s)
- Di Han
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Yong Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Wen-Pan Peng
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Fanchao Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Zhichao Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Cheng Gu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
3
|
Wang J, Yang J, Cheng X, Yin F, Zhao Y, Zhu Y, Yan Z, Khodaei F, Ommati MM, Manthari RK, Wang J. Influence of Calcium Supplementation against Fluoride-Mediated Osteoblast Impairment in Vitro: Involvement of the Canonical Wnt/β-Catenin Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10285-10295. [PMID: 31443611 DOI: 10.1021/acs.jafc.9b03835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluoride (F) is capable of promoting abnormal proliferation and differentiation in primary cultured mouse osteoblasts (OB cells), although the underlying mechanism responsible remains rare. This study aimed to explore the roles of wingless and INT-1 (Wnt) signaling pathways and screen appropriate doses of calcium (Ca2+) to alleviate the sodium fluoride (NaF)-induced OB cell toxicity. For this, we evaluated the effect of dickkopf-related protein 1 (DKK1) and Ca2+ on mRNA levels of wingless/integrated 3a (Wnt3a), low-density lipoprotein receptor-related protein 5 (LRP5), dishevelled 1 (Dv1), glycogen synthase kinase 3β (GSK3β), β-catenin, lymphoid enhancer binding factor 1 (LEF1), and cellular myelocytomatosis oncogene (cMYC), as well as Ccnd1 (Cyclin D1) in OB cells challenged with 10-6 mol/L NaF for 24 h. The demonstrated data showed that F significantly increased the OB cell proliferation rate. Ectogenic 0.5 mg/L DKK1 significantly inhibited the proliferation of OB cells induced by F. The mRNA expression levels of Wnt3a, LRP5, Dv1, LEF1, β-catenin, cMYC, and Ccnd1 were significantly increased in the F group, while significantly decreased in the 10-6 mol/L NaF + 0.5 mg/L DKK1 (FY) group. The mRNA expression levels of Wnt3a, LRP5, β-catenin, and cMYC were significantly decreased in the 10-6 mol/L NaF + 2 mmol/L CaCl2 (F+CaII) group. The protein expression levels of Wnt3a, Cyclin D1, cMYC, and β-catenin were significantly increased in the F group, whereas they were decreased in the F+CaII group. However, the mRNA and protein expression levels of GSK3β were significantly decreased in the F group while significantly increased in the F+CaII group. In summary, F activated the canonical Wnt/β-catenin pathway and changed the related gene expression and β-catenin protein location in OB cells, promoting cell proliferation. Ca2+ supplementation (2 mmol/L) reversed the expression levels of genes and proteins related to the canonical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jinming Wang
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Jiarong Yang
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Xiaofang Cheng
- College of Arts and Sciences , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Fengfeng Yin
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Yangfei Zhao
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Yaya Zhu
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Zipeng Yan
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Forouzan Khodaei
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Mohammad Mehdi Ommati
- College of Life Sciences , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Ram Kumar Manthari
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine , Shanxi Agricultural University , Taigu , 030801 Shanxi , P. R. China
| |
Collapse
|