1
|
Freitas PFS, Abdshah A, McKay RR, Sharifi N. HSD3B1, prostate cancer mortality and modifiable outcomes. Nat Rev Urol 2025; 22:313-320. [PMID: 39543357 DOI: 10.1038/s41585-024-00953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/17/2024]
Abstract
Androgen receptor stimulation by testosterone and dihydrotestosterone is crucial for prostate cancer progression. Despite the initial effectiveness of androgen deprivation therapy (ADT), castration-resistant prostate cancer eventually develops in most men. A common germline missense-encoding polymorphism in HSD3B1 increases extra-gonadal androgen biosynthesis from adrenal precursors owing to increased availability of the encoded enzyme 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) - hence, it is called the adrenal-permissive enzyme. This mechanism explains the more rapid progression to castration-resistant prostate cancer in men who inherit this allele than in men without it via sustained androgen receptor activation despite ADT. Multiple clinical studies, including data derived from prospective phase III studies, have linked adrenal-permissive allele inheritance to inferior clinical responses to ADT and increased mortality, but reversal is possible with upfront adrenal androgen blockade. The adrenal-permissive allele exhibits divergent frequencies across various groups worldwide, which could contribute to differences in clinical outcomes among these populations. Large-scale data from the Million Veteran Program have shown homozygous HSD3B1 adrenal-permissive allele inheritance to be an independent biomarker of prostate cancer-specific mortality. Together, these observations support the integration of HSD3B1 into germline testing and clinical trials as it might help to identify groups at increased likelihood of benefiting from early, intensified, AR-targeting interventions. Lastly, 3βHSD1 is a promising target for pharmacological inhibition, which enables new strategies for systemic prostate cancer therapy.
Collapse
Affiliation(s)
- Pedro F S Freitas
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alireza Abdshah
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rana R McKay
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Vaz-Ferreira A, Tavares V, de Melo IG, Rodrigues PR, Afonso A, Maurício MJ, Medeiros R. Connecting Gene Variation to Treatment Outcomes in Metastatic Castration-Resistant Prostate Adenocarcinoma: Insights into Second-Generation Androgen Receptor Axis-Targeted Therapies. Int J Mol Sci 2024; 25:9874. [PMID: 39337362 PMCID: PMC11432546 DOI: 10.3390/ijms25189874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PC) is one of the most commonly diagnosed tumours among men. Second-generation androgen receptor axis-targeted (ARAT) agents, namely abiraterone acetate (AbA) and enzalutamide (ENZ), are currently used in the management of metastatic castration-resistant PC (mCRPC). However, the treatment is challenging due to the lack of prognostic biomarkers. Meanwhile, single-nucleotide polymorphisms (SNPs) have emerged as potential prognostic indicators of mCRPC. Thus, this study evaluated the impact of relevant SNPs on the treatment outcomes of 123 mCRPC patients enrolled in a hospital-based cohort study. The CYP17A1 rs2486758 C allele was associated with a 50% reduction in the risk of developing castration resistance (hazard ratio (HR) = 0.55; p = 0.003). Among patients without metastasis at tumour diagnosis and under AbA, a marginal association between YBX1 rs10493112 and progression-free survival was detected (log-rank test, p = 0.056). In the same subgroup, significant associations of HSD3B1 rs1047303 (CC/CA vs. AA; HR = 3.41; p = 0.025), YBX1 rs12030724 (AT vs. AA; HR = 3.54; p = 0.039) and YBX1 rs10493112 (log-rank test, p = 0.041; CC vs. AA/AC; HR = 3.22; p = 0.053) with overall survival were also observed, which were confirmed by multivariate Cox analyses. Although validation with larger cohorts is required, these findings suggest that SNPs could enhance the prognosis assessment of mCRPC patients, leading to a more personalised treatment.
Collapse
Affiliation(s)
- Ana Vaz-Ferreira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.V.-F.); (P.R.R.); (A.A.); (M.J.M.)
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto CCC), 4200-072 Porto, Portugal; (V.T.); (I.G.d.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto CCC), 4200-072 Porto, Portugal; (V.T.); (I.G.d.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
| | - Patrícia Rafaela Rodrigues
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.V.-F.); (P.R.R.); (A.A.); (M.J.M.)
| | - Ana Afonso
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.V.-F.); (P.R.R.); (A.A.); (M.J.M.)
| | - Maria Joaquina Maurício
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.V.-F.); (P.R.R.); (A.A.); (M.J.M.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto CCC), 4200-072 Porto, Portugal; (V.T.); (I.G.d.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
3
|
Sharifi N, Azad AA, Patel M, Hearn JWD, Wozniak M, Zohren F, Sugg J, Haas GP, Stenzl A, Armstrong AJ. HSD3B1 genotype and outcomes in metastatic hormone-sensitive prostate cancer with androgen deprivation therapy and enzalutamide: ARCHES. Cell Rep Med 2024; 5:101644. [PMID: 39168093 PMCID: PMC11384952 DOI: 10.1016/j.xcrm.2024.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
HSD3B1 encodes 3β-hydroxysteroid dehydrogenase-1, which converts adrenal dehydroepiandrosterone to 5α-dihydrotestosterone and is inherited in adrenal-permissive (AP) or adrenal-restrictive forms. The AP allele is linked to castration resistance, mainly in low-volume tumors. Here, we investigate the association of HSD3B1 alleles with outcomes in ARCHES, a multinational, double-blind, randomized, placebo-controlled phase 3 trial that demonstrated clinical benefit with enzalutamide plus androgen deprivation therapy (ADT) in men with metastatic hormone-sensitive prostate cancer (mHSPC) compared to those treated with placebo plus ADT. There are no significant differences between genotypes for clinical efficacy endpoints. Enzalutamide significantly improves radiographic progression-free survival and overall survival vs. placebo irrespective of HSD3B1 status. Men with the AP genotype have higher post-progression mortality and treatment-emergent adverse events, including hypertension, cardiovascular events, and gynecomastia, but a lower fracture rate. Overall, enzalutamide is beneficial in men with mHSPC independent of the HSD3B1 genotype. Inherited polymorphisms of HSD3B1 may account for differential toxicities.
Collapse
Affiliation(s)
- Nima Sharifi
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mona Patel
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Arnulf Stenzl
- Department of Urology, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andrew J Armstrong
- Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate & Urologic Cancers, Durham, NC, USA
| |
Collapse
|
4
|
Hahn AW, Tidwell RS, Pilie PG, Yu Y, Liu J, Surasi DS, Titus M, Zhang J, Venkatesh N, Panaretakis T, Gregg JR, Zurita AJ, Siddiqui BA, Corn PG, Subudhi SK, Msaouel P, Koutroumpakis E, Huff CD, Aparicio A, McQuade JL, Frigo DE, Logothetis CJ. Body composition as a determinant of the therapeutic index with androgen signaling inhibition. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00870-8. [PMID: 39019979 DOI: 10.1038/s41391-024-00870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Androgen signaling is central to prostate cancer and men's health. Prior data indicates that increasing body fat is unfavorable in the localized setting yet associated with favorable outcomes in men with metastatic disease. Understanding the biological links between adiposity and prostate cancer may optimize the therapeutic index with ASI. We hypothesized that host adiposity and androgen synthesis are linked to the efficacy and toxicity of ASI for men with metastatic castration-resistant prostate cancer (mCRPC). METHODS A post-hoc analysis was done of NCT02703623 where men with mCRPC (n = 186) were treated for 8 weeks with abiraterone acetate, prednisone, and apalutamide (AAPA), and a satisfactory response was defined as a PSA decline >50%. Body composition was measured on baseline CT scans. Germline DNA WES was performed with a focus on variants in steroidogenic genes. Adipokine levels were measured in pre-treatment plasma. RESULTS Germline polymorphisms in 3 genes involved in androgen synthesis (AKR1C3 rs12529, CYP17A1 rs6162, SRD5A2 rs523349) were associated with differences in body composition at baseline on ADT alone (prior to receipt of AAPA). Elevated subcutaneous adipose tissue index (SATi, p = 0.02), visceral adipose tissue index (VATi, p = 0.03), and BMI (p = 0.04) were associated with satisfactory response to AAPA. Leptin had positive correlation with VATi (r = 0.47) and SATi (r = 0.48). CONCLUSION Inherited polymorphisms in androgen synthesis correlated with differences in body composition after exposure to ADT and warrant further investigation as candidate markers for body composition toxicity. Elevated subcutaneous and visceral adiposity were associated with improved response to ASI.
Collapse
Affiliation(s)
- Andrew W Hahn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rebecca S Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick G Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Devaki Shilpa Surasi
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha Venkatesh
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin R Gregg
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Chad D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
5
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Olmos D, Lorente D, Alameda D, Cattrini C, Romero-Laorden N, Lozano R, Lopez-Casas PP, Jambrina A, Capone C, Vanden Broecke AM, Trevisan M, Van Sanden S, Jürgens A, Herrera-Imbroda B, Castro E. Treatment patterns and outcomes in metastatic castration-resistant prostate cancer patients with and without somatic or germline alterations in homologous recombination repair genes. Ann Oncol 2024; 35:458-472. [PMID: 38417742 DOI: 10.1016/j.annonc.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Although germline BRCA mutations have been associated with adverse outcomes in prostate cancer (PC), understanding of the association between somatic/germline alterations in homologous recombination repair (HRR) genes and treatment outcomes in metastatic castration-resistant PC (mCRPC) is limited. The aim of this study was to investigate the prevalence and outcomes associated with somatic/germline HRR alterations, particularly BRCA1/2, in patients initiating first-line (1L) mCRPC treatment with androgen receptor signalling inhibitors (ARSi) or taxanes. PATIENTS AND METHODS Data from 729 mCRPC patients were pooled for CAPTURE from four multicentre observational studies. Eligibility required 1L treatment with ARSi or taxanes, adequate tumour samples and biomarker panel results. Patients underwent paired normal and tumour DNA analyses by next-generation sequencing using a custom gene panel including ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2, RAD51B and RAD54L. Patients were divided into subgroups based on somatic/germline alteration(s): with BRCA1/2 mutations (BRCA); with HRR mutations except BRCA1/2 (HRR non-BRCA); and without HRR alterations (non-HRR). Patients without BRCA1/2 mutations were classified as non-BRCA. Radiographic progression-free survival (rPFS), progression-free survival 2 (PFS2) and overall survival (OS) were assessed. RESULTS Of 729 patients, 96 (13.2%), 127 (17.4%) and 506 (69.4%) were in the BRCA, HRR non-BRCA and non-HRR subgroups, respectively. BRCA patients performed significantly worse for all outcomes than non-HRR or non-BRCA patients (P < 0.05), while PFS2 and OS were significantly shorter for BRCA than HRR non-BRCA patients (P < 0.05). HRR non-BRCA patients also had significantly worse rPFS, PFS2 and OS than non-HRR patients. Exploratory analyses suggested that for BRCA patients, there were no significant differences in outcomes associated with 1L treatment choice (ARSi or taxanes) or with the somatic/germline origin of the alterations. CONCLUSIONS Worse outcomes were observed for mCRPC patients in the BRCA subgroup compared with non-BRCA subgroups, either HRR non-BRCA or non-HRR. Despite its heterogeneity, the HRR non-BRCA subgroup presented worse outcomes than the non-HRR subgroup. Screening early for HRR mutations, especially BRCA1/2, is crucial in improving mCRPC patient prognosis.
Collapse
Affiliation(s)
- D Olmos
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid.
| | - D Lorente
- Instituto Valenciano de Oncología, Valencia; Hospital Provincial de Castellón, Castellón de la Plana
| | - D Alameda
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - C Cattrini
- Maggiore della Carità University Hospital, Novara, Italy
| | - N Romero-Laorden
- Cátedra UAM-Fundación Instituto Roche de Medicina Personalizada de Precisión, Hospital Universitario de La Princesa, Madrid
| | - R Lozano
- Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - P P Lopez-Casas
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid
| | - A Jambrina
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid
| | - C Capone
- Janssen Inc., Issy-les-Moulineaux, France
| | | | - M Trevisan
- Janssen Pharmaceuticals, Zug, Switzerland
| | | | | | - B Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain; Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - E Castro
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid; Instituto de Investigación Biomédica de Málaga, Málaga, Spain.
| |
Collapse
|
7
|
McKay RR, Nelson TJ, Pagadala MS, Teerlink CC, Gao A, Bryant AK, Agiri FY, Guram K, Thompson RF, Pridgen KM, Seibert TM, Lee KM, Carter H, Lynch JA, Hauger RL, Rose BS. Adrenal-Permissive Germline HSD3B1 Allele and Prostate Cancer Outcomes. JAMA Netw Open 2024; 7:e242976. [PMID: 38506808 PMCID: PMC10955379 DOI: 10.1001/jamanetworkopen.2024.2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/25/2024] [Indexed: 03/21/2024] Open
Abstract
Importance The adrenal androgen-metabolizing 3β-hydroxysteroid dehydrogenase-1 enzyme, encoded by the HSD3B1 gene, catalyzes the rate-limiting step necessary for synthesizing nontesticular testosterone and dihydrotestosterone production. The common adrenal-permissive HSD3B1(1245C) allele is responsible for encoding the 3β-HSD1 protein with decreased susceptibility to degradation resulting in higher extragonadal androgen synthesis. Retrospective studies have suggested an association of the HSD3B1 adrenal-permissive homozygous genotype with androgen deprivation therapy resistance in prostate cancer. Objective To evaluate differences in mortality outcomes by HSD3B1 genetic status among men with prostate cancer. Design, Setting, and Participants This cohort study of patients with prostate cancer who were enrolled in the Million Veteran Program within the Veterans Health Administration (VHA) system between 2011 and 2023 collected genotyping and phenotyping information. Exposure HSD3B1 genotype status was categorized as AA (homozygous adrenal-restrictive), AC (heterozygous adrenal-restrictive), or CC (homozygous adrenal-permissive). Main Outcomes and Measures The primary outcome of this study was prostate cancer-specific mortality (PCSM), defined as the time from diagnosis to death from prostate cancer, censored at the date of last VHA follow-up. Secondary outcomes included incidence of metastases and PCSM in predefined subgroups. Results Of the 5287 participants (median [IQR] age, 69 [64-74] years), 402 (7.6%) had the CC genotype, 1970 (37.3%) had the AC genotype, and 2915 (55.1%) had the AA genotype. Overall, the primary cause of death for 91 patients (1.7%) was prostate cancer. Cumulative incidence of PCSM at 5 years after prostate cancer diagnosis was higher among men with the CC genotype (4.0%; 95% CI, 1.7%-6.2%) compared with the AC genotype (2.1%; 95% CI, 1.3%-2.8%) and AA genotype (1.9%; 95% CI, 1.3%-2.4%) (P = .02). In the 619 patients who developed metastatic disease at any time, the cumulative incidence of PCSM at 5 years was higher among patients with the CC genotype (36.0%; 95% CI, 16.7%-50.8%) compared with the AC genotype (17.9%; 95% CI, 10.5%-24.7%) and AA genotype (18.5%; 95% CI, 12.0%-24.6%) (P = .01). Conclusions and Relevance In this cohort study of US veterans undergoing treatment for prostate cancer at the VHA, the HSD3B1 CC genotype was associated with inferior outcomes. The HSD3B1 biomarker may help identify patients who may benefit from therapeutic targeting of 3β-hydroxysteroid dehydrogenase-1 and the androgen-signaling axis.
Collapse
Affiliation(s)
- Rana R McKay
- Division of Hematology-Oncology, Department of Internal Medicine, University of California, San Diego, La Jolla
| | - Tyler J Nelson
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Meghana S Pagadala
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Craig C Teerlink
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Anthony Gao
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Alex K Bryant
- Department of Radiation Oncology, University of Michigan, Ann Arbor
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan
| | - Fatai Y Agiri
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Kripa Guram
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
| | - Reid F Thompson
- Department of Radiation Medicine, Oregon Health and Sciences University, Portland
- Division of Hospital and Specialty Medicine, Veterans Affairs Portland Healthcare System, Portland, Oregon
| | - Kathryn M Pridgen
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Bioengineering, University of California, San Diego, La Jolla
- Department of Radiology, University of California, San Diego, La Jolla
| | - Kyung Min Lee
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla
| | - Julie A Lynch
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Richard L Hauger
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla
| | - Brent S Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
8
|
Buck SAJ, Meertens M, van Ooijen FMF, Oomen-de Hoop E, de Jonge E, Coenen MJH, Bergman AM, Koolen SLW, de Wit R, Huitema ADR, van Schaik RHN, Mathijssen RHJ. A common germline variant in CYP11B1 is associated with adverse clinical outcome of treatment with abiraterone or enzalutamide. Biomed Pharmacother 2023; 169:115890. [PMID: 37988848 DOI: 10.1016/j.biopha.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
Extragonadal androgens play a pivotal role in prostate cancer disease progression on androgen receptor signaling inhibitors (ARSi), including abiraterone and enzalutamide. We aimed to investigate if germline variants in genes involved in extragonadal androgen synthesis contribute to resistance to ARSi and may predict clinical outcomes on ARSi. We included ARSi naive metastatic prostate cancer patients treated with abiraterone or enzalutamide and determined 18 germline variants in six genes involved in extragonadal androgen synthesis. Variants were tested in univariate and multivariable analysis for the relation with overall survival (OS) and time to progression (TTP) by Cox regression, and PSA response by logistic regression. A total of 275 patients were included. From the investigated genes CYP17A1, HSD3B1, CYP11B1, AKR1C3, SRD5A1 and SRD5A2, only rs4736349 in CYP11B1 in homozygous form (TT), present in 54 patients (20%), was related with a significantly worse OS (HR = 1.71, 95% CI 1.09 - 2.68, p = 0.019) and TTP (HR = 1.50, 95% CI 1.08 - 2.09, p = 0.016), and was related with a significantly less frequent PSA response (OR = 0.48, 95% CI 0.24 - 0.96, p = 0.038) on abiraterone or enzalutamide in a multivariable analysis. The frequent germline variant rs4736349 in CYP11B1 is, as homozygote, an independent negative prognostic factor for treatment with abiraterone or enzalutamide in ARSi naive metastatic prostate cancer patients. Our findings warrant prospective investigation of this potentially important predictive biomarker.
Collapse
Affiliation(s)
- Stefan A J Buck
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands.
| | - Marinda Meertens
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | | | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Evert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andries M Bergman
- Department of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Zhang X, Wang Z, Huang S, He D, Yan W, Zhuang Q, Wang Z, Wang C, Tan Q, Liu Z, Yang T, Liu Y, Ren R, Li J, Butler W, Tang H, Wei GH, Li X, Wu D, Li Z. Active DHEA uptake in the prostate gland correlates with aggressive prostate cancer. J Clin Invest 2023; 133:e171199. [PMID: 38099500 PMCID: PMC10721157 DOI: 10.1172/jci171199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Strategies for patient stratification and early intervention are required to improve clinical benefits for patients with prostate cancer. Here, we found that active DHEA utilization in the prostate gland correlated with tumor aggressiveness at early disease stages, and 3βHSD1 inhibitors were promising for early intervention. [3H]-labeled DHEA consumption was traced in fresh prostatic biopsies ex vivo. Active DHEA utilization was more frequently found in patients with metastatic disease or therapy-resistant disease. Genetic and transcriptomic features associated with the potency of prostatic DHEA utilization were analyzed to generate clinically accessible approaches for patient stratification. UBE3D, by regulating 3βHSD1 homeostasis, was discovered to be a regulator of patient metabolic heterogeneity. Equilin suppressed DHEA utilization and inhibited tumor growth as a potent 3βHSD1 antagonist, providing a promising strategy for the early treatment of aggressive prostate cancer. Overall, our findings indicate that patients with active prostatic DHEA utilization might benefit from 3βHSD1 inhibitors as early intervention.
Collapse
Affiliation(s)
- Xuebin Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
| | - Zengming Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongyin He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
| | - Weiwei Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
| | - Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
| | - Zixian Wang
- Fudan University Shanghai Cancer Center and MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chenyang Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
| | - Ziqun Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - William Butler
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center and MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xin Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, and
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
10
|
Rehman K, Iqbal Z, Zhiqin D, Ayub H, Saba N, Khan MA, Yujie L, Duan L. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on pharmacotherapy for prostate cancer. Cancer Cell Int 2023; 23:247. [PMID: 37858151 PMCID: PMC10585889 DOI: 10.1186/s12935-023-03084-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Prostate cancer (PCa) is a non-cutaneous malignancy in males with wide variation in incidence rates across the globe. It is the second most reported cause of cancer death. Its etiology may have been linked to genetic polymorphisms, which are not only dominating cause of malignancy casualties but also exerts significant effects on pharmacotherapy outcomes. Although many therapeutic options are available, but suitable candidates identified by useful biomarkers can exhibit maximum therapeutic efficacy. The single-nucleotide polymorphisms (SNPs) reported in androgen receptor signaling genes influence the effectiveness of androgen receptor pathway inhibitors and androgen deprivation therapy. Furthermore, SNPs located in genes involved in transport, drug metabolism, and efflux pumps also influence the efficacy of pharmacotherapy. Hence, SNPs biomarkers provide the basis for individualized pharmacotherapy. The pharmacotherapeutic options for PCa include hormonal therapy, chemotherapy (Docetaxel, Mitoxantrone, Cabazitaxel, and Estramustine, etc.), and radiotherapy. Here, we overview the impact of SNPs reported in various genes on the pharmacotherapy for PCa and evaluate current genetic biomarkers with an emphasis on early diagnosis and individualized treatment strategy in PCa.
Collapse
Affiliation(s)
- Khurram Rehman
- Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Deng Zhiqin
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Hina Ayub
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | - Naseem Saba
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | | | - Liang Yujie
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
11
|
Dai C, Dehm SM, Sharifi N. Targeting the Androgen Signaling Axis in Prostate Cancer. J Clin Oncol 2023; 41:4267-4278. [PMID: 37429011 PMCID: PMC10852396 DOI: 10.1200/jco.23.00433] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Activation of the androgen receptor (AR) and AR-driven transcriptional programs is central to the pathophysiology of prostate cancer. Despite successful translational efforts in targeting AR, therapeutic resistance often occurs as a result of molecular alterations in the androgen signaling axis. The efficacy of next-generation AR-directed therapies for castration-resistant prostate cancer has provided crucial clinical validation for the continued dependence on AR signaling and introduced a range of new treatment options for men with both castration-resistant and castration-sensitive disease. Despite this, however, metastatic prostate cancer largely remains an incurable disease, highlighting the need to better understand the diverse mechanisms by which tumors thwart AR-directed therapies, which may inform new therapeutic avenues. In this review, we revisit concepts in AR signaling and current understandings of AR signaling-dependent resistance mechanisms as well as the next frontier of AR targeting in prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Massachusetts General Hospital Cancer Center, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Scott M. Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
- Department of Urology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
12
|
Zhuang Q, Huang S, Li Z. Prospective role of 3βHSD1 in prostate cancer precision medicine. Prostate 2023; 83:619-627. [PMID: 36842160 DOI: 10.1002/pros.24504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Prostate cancer is addicted to androgens. The steroidogenic enzyme 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) recognizes pregnenolone, dehydroepiandrosterone (DHEA), and steroidal medicine abiraterone as substrates to accelerate disease progression. METHODS References for this review were identified through searches of PubMed with the search terms "prostate cancer", "HSD3B1", and "3bHSD1" from 1990 until June, 2022. RESULTS Genotype of 3βHSD1 has been reported to correlate with tumor aggressiveness of advanced prostate cancer in multiple clinical scenarios. The ethnic differences and limitations of using 3βHSD1 genotype as a prognostic biomarker have been discussed here. The activity of 3βHSD1 increases in patients treated with abiraterone and enzalutamide, giving rise to treatment resistance. Further elucidation of 3βHSD1 regulatory mechanisms will shed light on more approaches for disease intervention. We also review the recent advance on 3βHSD1 inhibitors and targeting 3βHSD1 for prostate cancer management. Novel 3βHSD1 inhibitors will be needed to provide additional options for prostate cancer management. CONCLUSION 3βHSD1 is both a predictive biomarker and a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Huang
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Urology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Li X, Berk M, Goins C, Alyamani M, Chung YM, Wang C, Patel M, Rathi N, Zhu Z, Willard B, Stauffer S, Klein E, Sharifi N. BMX controls 3βHSD1 and sex steroid biosynthesis in cancer. J Clin Invest 2023; 133:e163498. [PMID: 36647826 PMCID: PMC9843047 DOI: 10.1172/jci163498] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer is highly dependent on androgens and the androgen receptor (AR). Hormonal therapies inhibit gonadal testosterone production, block extragonadal androgen biosynthesis, or directly antagonize AR. Resistance to medical castration occurs as castration-resistant prostate cancer (CRPC) and is driven by reactivation of the androgen-AR axis. 3β-hydroxysteroid dehydrogenase-1 (3βHSD1) serves as the rate-limiting step for potent androgen synthesis from extragonadal precursors, thereby stimulating CRPC. Genetic evidence in men demonstrates the role of 3βHSD1 in driving CRPC. In postmenopausal women, 3βHSD1 is required for synthesis of aromatase substrates and plays an essential role in breast cancer. Therefore, 3βHSD1 lies at a critical junction for the synthesis of androgens and estrogens, and this metabolic flux is regulated through germline-inherited mechanisms. We show that phosphorylation of tyrosine 344 (Y344) occurs and is required for 3βHSD1 cellular activity and generation of Δ4, 3-keto-substrates of 5α-reductase and aromatase, including in patient tissues. BMX directly interacts with 3βHSD1 and is necessary for enzyme phosphorylation and androgen biosynthesis. In vivo blockade of 3βHSD1 Y344 phosphorylation inhibits CRPC. These findings identify what we believe to be new hormonal therapy pharmacologic vulnerabilities for sex-steroid dependent cancers.
Collapse
Affiliation(s)
- Xiuxiu Li
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | | | - Mohammad Alyamani
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Chenyao Wang
- Department of Inflammation and Immunity, Lerner Research Institute
| | - Monaben Patel
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Nityam Rathi
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Ziqi Zhu
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | | | - Shaun Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute
| | - Eric Klein
- Genitourinary Malignancies Research Center, Lerner Research Institute
- Department of Urology, Glickman Urological and Kidney Institute, and
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute
- Department of Urology, Glickman Urological and Kidney Institute, and
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Qiu Y. A phosphorylation switch controls androgen biosynthesis in prostate cancer. J Clin Invest 2023; 133:e166499. [PMID: 36647834 PMCID: PMC9843042 DOI: 10.1172/jci166499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Androgen biosynthesis enzyme 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1) encoded by HSD3B1 has emerged as a potential driver for therapeutic resistance in prostate cancer. Patients with homozygous HSD3B1(1245C) inheritance are intrinsically more resistant to currently available androgen/androgen receptor-targeting (AR-targeting) drugs. In this issue of the JCI, Li et al. present data on the regulation of 3βHSD1 phosphorylation and activity by tyrosine kinase BMX. Inhibition of BMX activity by genetic or pharmacologic approaches blocked androgen biosynthesis in prostate cancer cells and inhibited tumor growth in preclinical xenograft models. The findings provide insights into mechanisms underlying castration resistance in prostate cancer and reveal a potential strategy to circumvent therapeutic resistance in patients with homozygous HSD3B1(1245C) inheritance.
Collapse
Affiliation(s)
- Yun Qiu
- Departments of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Veterans Affairs Maryland Health Care System (VAMHCS), Baltimore, Maryland, USA
| |
Collapse
|
15
|
Pozas J, Álvarez Rodríguez S, Fernández VA, Burgos J, Santoni M, Manneh Kopp R, Molina-Cerrillo J, Alonso-Gordoa T. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future? Cancers (Basel) 2022; 14:6071. [PMID: 36551557 PMCID: PMC9776956 DOI: 10.3390/cancers14246071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The androgen signaling pathway is the cornerstone in the treatment of high risk or advanced prostate cancer patients. However, in recent years, different mechanisms of resistance have been defined in this field, limiting the efficacy of the currently approved antiandrogen drugs. Different therapeutic approaches are under research to assess the role of combination therapies against escape signaling pathways or the development of novel antiandrogen drugs to try to solve the primary or acquired resistance against androgen dependent or independent pathways. The present review aims to summarize the current state of androgen inhibition in the therapeutic algorithm of patients with advanced prostate cancer and the mechanisms of resistance to those available drugs. In addition, this review conducted a comprehensive overview of the main present and future research approaches in the field of androgen receptor inhibition to overcome these resistances and the potential new drugs under research coming into this setting.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Álvarez Rodríguez
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | | | - Javier Burgos
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Matteo Santoni
- Medical Oncology Department, Mazerata Hospital, 62100 Macerata, Italy
| | - Ray Manneh Kopp
- Sociedad de Oncología y Hematología del Cesar, Valledupar 200001, Colombia
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
16
|
Yang T, Liu Y, Chen S, Tian J, Zhu X, Zhang L, Wang W, Qin Y, Richter J, Anand A, Xu C, Chi Y, Wang C, Bian C, Wu D, Li Z, Huang S. Serum prolactin level as a predictive factor for abiraterone response in patients with metastatic castration-resistant prostate cancer. Prostate 2022; 82:1284-1292. [PMID: 35747943 DOI: 10.1002/pros.24402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND To investigate the prognostic value and potential therapeutic target of the baseline serum hormones in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone. METHODS This retrospective study was performed in patients with mCRPC receiving abiraterone acetate (AA) from July 2016 to September 2020. Patients who had serum hormone tests within 2 weeks before AA treatment were included. Univariate analysis and Cox regression were performed to evaluate the correlation of sex hormones with progression-free survival (PFS) and overall survival (OS). Prolactin (PRL) expression in the clinical specimens was evaluated by immunohistochemistry. Bone metastases were quantified by automated Bone Scan Index (aBSI). RESULTS The study included 61 patients with a median follow-up of 19.0 months. Patients with lower baseline PRL levels (median) responded better to AA than those with higher baseline PRL levels as indicated by prostate-specific antigen (PSA) reduction (PSA90, 66.7% vs. 25.8%, p = 0.001), PFS (19.6 vs. 7.9 months), and OS (52.8 vs. 19.2 months). Cox regression adjusted for clinical factors also confirmed that baseline PRL level was an independent predictive factor for PFS (hazard ratio = 1.096, p = 0.007). Prostatic PRL expression increased as the disease progressed. PRL expression was also detected in biopsy samples from bone metastasis but not in normal bone tissue, and the serum PRL levels were positively correlated with aBSIs (r = 0.28, p = 0.037). CONCLUSIONS Serum PRL levels are predictive of response to AA in patients with mCRPC. Serum PRL levels are positively correlated with the volume of metastatic bone disease.
Collapse
Affiliation(s)
- Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiale Tian
- Department of Laboratory Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Long Zhang
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyi Qin
- Department of Health Statistics, Naval Medical University, Shanghai, China
| | - Jens Richter
- Department of Digital Imaging Biomarkers, EXINI Diagnostics AB, Lund, Sweden
| | - Aseem Anand
- Department of Digital Imaging Biomarkers, EXINI Diagnostics AB, Lund, Sweden
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongnan Chi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenyang Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cuidong Bian
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenfei Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
McManus JM, Vargas R, Bazeley PS, Schumacher FR, Sharifi N. Association Between Adrenal-Restrictive HSD3B1 Inheritance and Hormone-Independent Subtypes of Endometrial and Breast Cancer. JNCI Cancer Spectr 2022; 6:pkac061. [PMID: 35947687 PMCID: PMC9475354 DOI: 10.1093/jncics/pkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The germline variant rs1047303 (HSD3B1[1245A/C]), restricting or enabling production of potent androgens and estrogens from adrenal precursors, affects outcomes of castration-resistant prostate cancer and is associated with estrogen receptor positivity in postmenopausal breast cancer. Like breast cancer, endometrial cancer is another malignancy with hormone-dependent and hormone-independent subtypes. We hypothesized that adrenal-restrictive HSD3B1 genotype would associate with hormone-independent cancer subtypes. METHODS We employed a previously described classification of tumors in The Cancer Genome Atlas into genomic clusters. We determined HSD3B1 genotype frequencies by endometrial cancer genomic cluster and calculated the odds per adrenal-restrictive A allele for the largely hormone-independent copy-number (CN) high subtype vs other subtypes. An equivalent analysis was performed for the genomically similar, hormone-independent basal breast cancer subtype. Last, we performed survival analyses for UK Biobank participants with endometrial cancer by HSD3B1 genotype. All statistical tests were 2-sided. RESULTS The adrenal-restrictive HSD3B1(1245A) allele was associated with the CN-high endometrial cancer subtype (odds ratio [OR] = 1.63, 95% confidence interval [CI] = 1.14 to 2.32; P = .007). Similarly, HSD3B1(1245A) was associated with the basal breast cancer subtype (OR = 1.54, 95% CI = 1.13 to 2.08; P = .006). In the UK Biobank, endometrial cancer patients homozygous for HSD3B1(1245A) had worse overall (hazard ratio [HR] = 1.39, 95% CI = 1.16 to 1.68; P < .001) and cancer-specific (HR = 1.39, 95% CI = 1.14 to 1.70; P = .001) survival, consistent with the A allele being enriched in the more aggressive CN-high subtype. CONCLUSIONS These findings suggest roles for adrenal-restrictive vs adrenal-permissive steroidogenesis, by way of rs1047303 genotype, in the development of and/or outcomes from at least 3 commonly hormone-associated types of cancer: prostate, breast, and endometrial.
Collapse
Affiliation(s)
- Jeffrey M McManus
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women’s Health Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Peter S Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Department of Population Health and Quantitative Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Epistolio S, Ramelli G, Ottaviano M, Crupi E, Marandino L, Biggiogero M, Maida PA, Ruinelli L, Vogl U, Mangan D, Pascale M, Cantù M, Ceschi A, Bernasconi E, Mazzucchelli L, Catapano C, Alimonti A, Garzoni C, Gillessen Sommer S, Stefanini FM, Franzetti-Pellanda A, Frattini M, Pereira Mestre R. P1245 Polymorphic Variants of HSD3B1 Gene Confer Different Outcome in Specific Subgroups of Patients Infected With SARS-CoV-2. Front Med (Lausanne) 2022; 8:793728. [PMID: 35874037 PMCID: PMC9302441 DOI: 10.3389/fmed.2021.793728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Severe respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the androgen receptor (AR), through ACE2 receptor and TMPRSS2, to enter nasal and upper airways epithelial cells. Genetic analyses revealed that HSD3B1 P1245C polymorphic variant increases dihydrotestosterone production and upregulation of TMPRSS2 with respect to P1245A variant, thus possibly influencing SARS-CoV-2 infection. Our aim was to characterize the HSD3B1 polymorphism status and its potential association with clinical outcomes in hospitalized patients with COVID-19 in Southern Switzerland. Materials and Methods: The cohort included 400 patients hospitalized for COVID-19 during the first wave between February and May 2020 in two different hospitals of Canton Ticino. Genomic DNA was extracted from formalin-fixed paraffin-embedded tissue blocks, and HSD3B1 gene polymorphism was evaluated by Sanger sequencing. Statistical associations were verified using different test. Results:HSD3B1 polymorphic variants were not associated with a single classical factor related to worse clinical prognosis in hospitalized patients with SARS-CoV-2. However, in specific subgroups, HSD3B1 variants played a clinical role: intensive care unit admission was more probable in patients with P1245C diabetes compared with P1245A individuals without this comorbidity and death was more associated with hypertensive P1245A>C cases than patients with P1245A diabetes without hypertension. Discussion: This is the first study showing that HSD3B1 gene status may influence the severity of SARS-CoV-2 infection. If confirmed, our results could lead to the introduction of HSD3B1 gene status analysis in patients infected with SARS-CoV-2 to predict clinical outcome.
Collapse
Affiliation(s)
- Samantha Epistolio
- Laboratory of Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
- *Correspondence: Samantha Epistolio
| | - Giulia Ramelli
- Laboratory of Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
| | - Margaret Ottaviano
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Emanuele Crupi
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Laura Marandino
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinic Research Unit, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Pier Andrea Maida
- Clinic Research Unit, Clinica Luganese Moncucco, Lugano, Switzerland
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Lorenzo Ruinelli
- Informatics and Communication Technology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Dylan Mangan
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Mariarosa Pascale
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Marco Cantù
- Institute of Laboratory Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Department of Medicine, Ente Ospedaliero Cantonale, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Medicine, Division of Biomedical Sciences, University of Geneva, Geneva, Switzerland
| | - Luca Mazzucchelli
- Laboratory of Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Carlo Catapano
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Experimental Therapeutics, Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Andrea Alimonti
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Molecular Oncology, Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Silke Gillessen Sommer
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Federico Mattia Stefanini
- Department of Enviromental Science and Policy, Faculty of Science and Technology-ESP, University of Milan, Milan, Italy
| | | | - Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale, Locarno, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Experimental Therapeutics, Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
19
|
Mei Z, Yang T, Liu Y, Gao Y, Hou Z, Zhuang Q, He D, Zhang X, Tan Q, Zhu X, Qin Y, Chen X, Xu C, Bian C, Wang X, Wang C, Wu D, Huang S, Li Z. Management of prostate cancer by targeting 3βHSD1 after enzalutamide and abiraterone treatment. Cell Rep Med 2022; 3:100608. [PMID: 35584629 PMCID: PMC9133401 DOI: 10.1016/j.xcrm.2022.100608] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022]
Abstract
Novel strategies for prostate cancer therapy are required to overcome resistance to abiraterone and enzalutamide. Here, we show that increasing 3βHSD1 after abiraterone and enzalutamide treatment is essential for drug resistance, and biochanin A (BCA), as an inhibitor of 3βHSD1, overcomes drug resistance. 3βHSD1 activity increases in cell lines, biopsy samples, and patients after long-term treatment with enzalutamide or abiraterone. Enhanced steroidogenesis, mediated by 3βHSD1, is sufficient to impair enzalutamide function. In patients, accelerated abiraterone metabolism results in a decline of plasma abiraterone as disease progresses. BCA inhibits 3βHSD1 and suppresses prostate cancer development alone or together with abiraterone and enzalutamide. Daidzein, a BCA analog of dietary origin, is associated with higher plasma abiraterone concentrations and prevented prostate-specific antigen (PSA) increases in abiraterone-resistant patients. Overall, our results show that 3βHSD1 is a promising target to overcome drug resistance, and BCA suppresses disease progression as a 3βHSD1 inhibitor even after abiraterone and enzalutamide resistance.
Collapse
Affiliation(s)
- Zejie Mei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Dongyin He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuebin Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yingyi Qin
- Department of Health Statistics, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Cuidong Bian
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Chenyang Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
20
|
Hou Z, Huang S, Mei Z, Chen L, Guo J, Gao Y, Zhuang Q, Zhang X, Tan Q, Yang T, Liu Y, Chi Y, Qi L, Jiang T, Shao X, Wu Y, Xu X, Qin J, Ren R, Tang H, Wu D, Li Z. Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer. Cell Rep Med 2022; 3:100561. [PMID: 35492874 PMCID: PMC9040187 DOI: 10.1016/j.xcrm.2022.100561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Prostate cancer continuously progresses following deprivation of circulating androgens originating from the testis and adrenal glands, indicating the existence of oncometabolites beyond androgens. In this study, mass-spectrometry-based screening of clinical specimens and a retrospective analysis on the clinical data of prostate cancer patients indicate the potential oncogenic effects of progesterone in patients. High doses of progesterone activate canonical and non-canonical androgen receptor (AR) target genes. Physiological levels of progesterone facilitate cell proliferation via GATA2. Inhibitors of 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) has been discovered and shown to suppress the generation of progesterone, eliminating its transient and accumulating oncogenic effects. An increase in progesterone is associated with poor clinical outcomes in patients and may be used as a predictive biomarker. Overall, we demonstrate that progesterone acts as an oncogenic hormone in prostate cancer, and strategies to eliminate its oncogenic effects may benefit prostate cancer patients. High doses of progesterone activate canonical and non-canonical AR signaling Progesterone of physiological levels exerts its chronic oncogenic effect via GATA2 Targeting 3βHSD1 to suppress progesterone synthesis blocks its oncogenic effects Serum progesterone might be a predictive biomarker for abiraterone response
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zejie Mei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yuanyuan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuebin Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yongnan Chi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Lifengrong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ting Jiang
- Department of Urology, First People's Hospital of Taicang, Taicang, Jiangsu 215400, China
| | - Xuefeng Shao
- Department of Urology, First People's Hospital of Taicang, Taicang, Jiangsu 215400, China
| | - Yan Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
21
|
Shiota M, Fujimoto N, Sekino Y, Tsukahara S, Nagakawa S, Takamatsu D, Abe T, Kinoshita F, Ueda S, Ushijima M, Matsumoto T, Kashiwagi E, Inokuchi J, Uchiumi T, Oda Y, Eto M. Clinical impact of HSD3B1 polymorphism by metastatic volume and somatic HSD3B1 alterations in advanced prostate cancer. Andrologia 2021; 54:e14307. [PMID: 34747051 DOI: 10.1111/and.14307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023] Open
Abstract
This study aimed to investigate the significance of HSD3B1 gene status including germline polymorphism and somatic alterations in prostate cancer. Patients with prostate cancer treated with androgen-deprivation therapy, as well as tissues from metastatic prostate cancer, were included. Genomic DNA was extracted from cancer tissues and whole blood samples, and HSD3B1 (rs1047303, 1245C) was genotyped by Sanger sequencing. The association of HSD3B1 genotype with progression-free survival according to metastatic volume was examined. Copy number alteration and gene expression of HSD3B1 were examined in prostate cancer cells and public datasets. Among 194 patients, 121 and 73 patients were categorized into low- and high-volume diseases respectively. In multivariate analysis, the adrenal-permissive genotype (AC/CC) was significantly associated with increased risk of progression compared with the adrenal-restrictive genotype (AA) in low volume, but not high-volume diseases. Somatic mutation in HSD3B1 was detected at least in two cases of castration-resistant prostate cancer tissues. HSD3B1 amplification and overexpression were detected in castration-resistant prostate cancer cells and tissues. The current findings suggest that both germline and somatic alterations of HSD3B1 may cooperatively promote castration resistance in prostate cancer and HSD3B1 as a promising biomarker for precision medicine, warranting further investigations.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Kyushu University, Fukuoka, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Kyushu University, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | | | - Dai Takamatsu
- Department of Urology, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Abe
- Department of Urology, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Kinoshita
- Department of Urology, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Ueda
- Department of Urology, Kyushu University, Fukuoka, Japan
| | - Miho Ushijima
- Department of Urology, Kyushu University, Fukuoka, Japan
| | | | - Eiji Kashiwagi
- Department of Urology, Kyushu University, Fukuoka, Japan
| | | | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Mostaghel EA, Marck BT, Kolokythas O, Chew F, Yu EY, Schweizer MT, Cheng HH, Kantoff PW, Balk SP, Taplin ME, Sharifi N, Matsumoto AM, Nelson PS, Montgomery RB. Circulating and Intratumoral Adrenal Androgens Correlate with Response to Abiraterone in Men with Castration-Resistant Prostate Cancer. Clin Cancer Res 2021; 27:6001-6011. [PMID: 34407973 PMCID: PMC8563401 DOI: 10.1158/1078-0432.ccr-21-1819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In metastatic castration-resistant prostate cancer (mCRPC) low serum androgens prior to starting abiraterone acetate (AA) is associated with more rapid progression. We evaluated the effect of AA on androgens in castration-resistant prostate cancer (CRPC) metastases and associations of intratumoral androgens with response. EXPERIMENTAL DESIGN We performed a phase II study of AA plus prednisone in mCRPC. The primary outcome was tissue testosterone at 4 weeks. Exploratory outcomes were association of steroid levels and genomic alterations with response, and escalating AA to 2,000 mg at progression. RESULTS Twenty-nine of 30 men were evaluable. Testosterone in metastatic biopsies became undetectable at 4 weeks (P < 0.001). Serum and tissue dehydroepiandrosterone sulfate (DHEAS) remained detectable in many patients and was not increased at progression. Serum and tissue DHEAS in the lowest quartile (pretreatment), serum DHEAS in the lowest quartile (4 weeks), and undetectable tissue DHEAS (on-therapy) associated with rapid progression (20 vs. 48 weeks, P = 0.0018; 20 vs. 52 weeks, P = 0.0003; 14 vs. 40 weeks, P = 0.0001; 20 vs. 56 weeks, P = 0.02, respectively). One of 16 men escalating to 2,000 mg had a 30% PSA decline; 13 developed radiographic progression by 12 weeks. Among patients with high serum DHEAS at baseline, wild-type (WT) PTEN status associated with longer response (61 vs. 33 weeks, P = 0.02). CONCLUSIONS Low-circulating adrenal androgen levels are strongly associated with an androgen-poor tumor microenvironment and with poor response to AA. Patients with CRPC with higher serum DHEAS levels may benefit from dual androgen receptor (AR)-pathway inhibition, while those in the lowest quartile may require combinations with non-AR-directed therapy.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington.
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brett T Marck
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - Felix Chew
- Department of Radiology, University of Washington, Seattle, Washington
| | - Evan Y Yu
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael T Schweizer
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Heather H Cheng
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alvin M Matsumoto
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - R Bruce Montgomery
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Hematology and Oncology, VA Puget Sound Health Care System, Seattle, Washington
| |
Collapse
|
23
|
Westaby D, Maza MDLDFDL, Paschalis A, Jimenez-Vacas JM, Welti J, de Bono J, Sharp A. A New Old Target: Androgen Receptor Signaling and Advanced Prostate Cancer. Annu Rev Pharmacol Toxicol 2021; 62:131-153. [PMID: 34449248 DOI: 10.1146/annurev-pharmtox-052220-015912] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remains central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | | | - Alec Paschalis
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | | | - Jon Welti
- The Institute of Cancer Research, London SM2 5NG, United Kingdom;
| | - Johann de Bono
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| |
Collapse
|
24
|
Clinical implications of genomic alterations in metastatic prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:310-322. [PMID: 33452452 DOI: 10.1038/s41391-020-00308-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023]
Abstract
There has been a rapid expansion in treatment options for the management of metastatic prostate cancer, but individual patient outcomes can be variable due to inter-patient tumor heterogeneity. Fortunately, the disease can be stratified on the basis of common somatic features, providing potential for the development of clinically useful prognostic and predictive biomarkers. Tissue biopsy programs and studies leveraging circulating tumor DNA (ctDNA) have revealed specific genomic alterations that are associated with aggressive disease biology. In this review, we discuss the potential for genomic subtyping to improve prognostication and to help guide treatment selection. We summarize data on associations between AR pathway alterations and patient response to AR signaling inhibitors and other standards of care. We describe the links between detection of different types of DNA damage repair defects and clinical outcomes with targeted therapies such as poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors or immune checkpoint inhibitors. PI3K signaling pathway inhibitors are also in advanced clinical development and we report upon the potential for these and other novel targeted therapies to have impact in specific molecular subsets of metastatic prostate cancer. Finally, we discuss the growing use of blood-based analytes for prognostic and predictive biomarker development, and summarize ongoing prospective biomarker-driven clinical trials.
Collapse
|
25
|
Hou Z, Huang S, Li Z. Androgens in prostate cancer: A tale that never ends. Cancer Lett 2021; 516:1-12. [PMID: 34052327 DOI: 10.1016/j.canlet.2021.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Androgens play an essential role in prostate cancer. Clinical treatments that target steroidogenesis and the androgen receptor (AR) successfully postpone disease progression. Abiraterone and enzalutamide, the next-generation androgen receptor pathway inhibitors (ARPI), emphasize the function of the androgen-AR axis even in castration-resistant prostate cancer (CRPC). However, with the increased incidence in neuroendocrine prostate cancer (NEPC) showing resistance to ARPI, the importance of androgen-AR axis in further disease management remains elusive. Herein we review the steroidogenic pathways associated with different disease stages and discuss the potential targets for disease management after manifesting resistance to abiraterone and enzalutamide.
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
26
|
Abstract
Huggins and Hodges demonstrated the therapeutic effect of gonadal testosterone deprivation in the 1940s and therefore firmly established the concept that prostate cancer is a highly androgen-dependent disease. Since that time, hormonal therapy has undergone iterative advancement, from the types of gonadal testosterone deprivation to modalities that block the generation of adrenal and other extragonadal androgens, to those that directly bind and inhibit the androgen receptor (AR). The clinical states of prostate cancer are the product of a superimposition of these therapies with nonmetastatic advanced prostate cancer, as well as frankly metastatic disease. Today's standard of care for advanced prostate cancer includes gonadotropin-releasing hormone agonists (e.g., leuprolide), second-generation nonsteroidal AR antagonists (enzalutamide, apalutamide, and darolutamide) and the androgen biosynthesis inhibitor abiraterone. The purpose of this review is to provide an assessment of hormonal therapies for the various clinical states of prostate cancer. The advancement of today's standard of care will require an accounting of an individual's androgen physiology that also has recently recognized germline determinants of peripheral androgen metabolism, which include HSD3B1 inheritance.
Collapse
Affiliation(s)
- Kunal Desai
- Department of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey M McManus
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Shiota M, Akamatsu S, Narita S, Terada N, Fujimoto N, Eto M. Genetic Polymorphisms and Pharmacotherapy for Prostate Cancer. JMA J 2021; 4:99-111. [PMID: 33997443 PMCID: PMC8119070 DOI: 10.31662/jmaj.2021-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape of pharmacotherapy for prostate cancer has dramatically evolved, and multiple therapeutic options have become available for prostate cancer patients. Therefore, useful biomarkers to identify suitable candidates for treatment are required to maximize the efficacy of pharmacotherapy. Genetic polymorphisms such as single-nucleotide polymorphisms (SNPs) and tandem repeats have been shown to influence the therapeutic effects of pharmacotherapy for prostate cancer patients. For example, genetic polymorphisms in the genes involved in androgen receptor signaling are reported to be associated with the therapeutic outcome of androgen-deprivation therapy as well as androgen receptor-pathway inhibitors. In addition, SNPs in genes involved in drug metabolism and efflux pumps are associated with therapeutic effects of taxane chemotherapy. Thus, genetic polymorphisms such as SNPs are promising biomarkers to realize personalized medicine. Here, we overview the current findings on the influence of genetic polymorphisms on the outcome of pharmacotherapy for prostate cancer and discuss current issues as well as future visions in this field.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Sharifi N. Homozygous HSD3B1(1245C) inheritance and poor outcomes in metastatic castration-resistant prostate cancer with abiraterone or enzalutamide: what does it mean? Ann Oncol 2020; 31:1103-1105. [PMID: 32592760 DOI: 10.1016/j.annonc.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, USA; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA.
| |
Collapse
|