2
|
Vohra V, Dirks A, Bonito G, James T, Carroll DK. A 19-year longitudinal assessment of gyromitrin-containing (Gyromitra spp.) mushroom poisonings in Michigan. Toxicon 2024; 247:107825. [PMID: 38908526 DOI: 10.1016/j.toxicon.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Mushroom poisonings are common in the United States. Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) is a clinically significant mycotoxin primarily associated with the lorchel (i.e. the false morel) Gyromitra esculenta. Resemblance between 'true and false morels' has resulted in misidentification of Gyromitra spp. as edible and sought after Morchella spp., resulting in toxicity. Despite literature evidence outlining toxic sequalae, Gyromitra spp. mushrooms are commonly consumed and prepared for culinary purposes. Classic clinical teachings emphasize significant neurotoxicity, including seizures, associated with ingestion of gyromitrin-containing mushrooms, stemming from gyromitrin's terminal metabolite monomethylhydrazine. We performed a longitudinal descriptive review of the clinical toxicity associated with ingestion of mushroom species known or suspected to contain gyromitrin in cases reported to the Michigan Poison & Drug Information Center between January 1, 2002, to December 31, 2020. Our 19-year descriptive case series of gyromitrin-containing mushroom ingestions reported to our Center demonstrated a preponderance of gastrointestinal signs and symptoms, including hepatotoxicity. Of 118 identified cases, 108 (91.5%) of the reported ingestions involved Gyromitra esculenta. The most frequent clinical findings associated with symptomatic ingestions (n = 83) were the aforementioned gastrointestinal symptoms (n = 62; 74.7%). Neurological symptoms were less frequent (n = 22, 26.5%) while hepatotoxicity occurred in fewer patients (n = 14; 16.9%). Of symptomatic patients, most were treated with symptomatic and supportive care (n = 58; 70%). Pyridoxine was used in a total of seven patients (n = 7; 8.4%) with either hepatotoxicity or neurotoxicity. Medical outcomes ranged from minor to major, with no reported deaths. Patient presentations (i.e. GI vs. neurotoxic symptoms) following ingestion of gyromitrin-containing mushrooms may be highly variable and multifactorial, owing to differences in dose ingested, geographical distribution, genetic variability of both patient and mushroom species, and species-specific differences in toxin composition. Future research warrants species-level identification of ingested gyromitrin-containing mushrooms and investigating the contribution of genetic polymorphisms to differences in clinical toxidromes.
Collapse
Affiliation(s)
- V Vohra
- Michigan Poison & Drug Information Center, Department of Emergency Medicine, Wayne State University School of Medicine, 550 East Canfield St., Detroit, MI, USA.
| | - A Dirks
- University of Michigan, Ecology and Evolutionary Biology, 4038 Biological Sciences Building, Ann Arbor, MI, USA.
| | - G Bonito
- Michigan State University, College of Agriculture & Natural Resources, Department of Plant, Soil, and Microbial Sciences, 1066 Bogue Street, East Lansing, MI, USA.
| | - T James
- University of Michigan, Ecology and Evolutionary Biology, 4038 Biological Sciences Building, Ann Arbor, MI, USA.
| | - D K Carroll
- Detroit Medical Center, Department of Emergency Medicine, 4201 St. Antoine St., Detroit, MI, USA.
| |
Collapse
|
3
|
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, Reis J, Vernoux JP, Raoul C, Camu W. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research. Front Neurosci 2023; 17:1005096. [PMID: 36860617 PMCID: PMC9969898 DOI: 10.3389/fnins.2023.1005096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
The identity and role of environmental factors in the etiology of sporadic amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps. In both instances, there is a strong association with exposure to DNA-damaging (genotoxic) chemicals years or decades prior to clinical onset of motor neuron disease. In light of this recent understanding, we discuss published geographic clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in relation to their demographic, geographic and environmental associations but also whether, in theory, there was the possibility of exposure to genotoxic chemicals of natural or synthetic origin. Special opportunities to test for such exposures in sALS exist in southeast France, northwest Italy, Finland, the U.S. East North Central States, and in the U.S. Air Force and Space Force. Given the degree and timing of exposure to an environmental trigger of ALS may be related to the age at which the disease is expressed, research should focus on the lifetime exposome (from conception to clinical onset) of young sALS cases. Multidisciplinary research of this type may lead to the identification of ALS causation, mechanism, and primary prevention, as well as to early detection of impending ALS and pre-clinical treatment to slow development of this fatal neurological disease.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Valerie S. Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Glen E. Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - B. Zane Horowitz
- Department of Emergency Medicine, Oregon-Alaska Poison Center, Oregon Health and Science University, Portland, OR, United States
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Jacques Reis
- University of Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Jean-Paul Vernoux
- Normandie Université, UNICAEN, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Caen, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
4
|
Dirks AC, Mohamed OG, Schultz PJ, Miller AN, Tripathi A, James TY. Not all bad: Gyromitrin has a limited distribution in the false morels as determined by a new ultra high-performance liquid chromatography method. Mycologia 2023; 115:1-15. [PMID: 36541902 DOI: 10.1080/00275514.2022.2146473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) and its homologs are deadly mycotoxins produced most infamously by the lorchel (also known as false morel) Gyromitra esculenta, which is paradoxically consumed as a delicacy in some parts of the world. There is much speculation about the presence of gyromitrin in other species of the lorchel family (Discinaceae), but no studies have broadly assessed its distribution. Given the history of poisonings associated with the consumption of G. esculenta and G. ambigua, we hypothesized that gyromitrin evolved in the last common ancestor of these taxa and would be present in their descendants with adaptive loss of function in the nested truffle clade, Hydnotrya. To test this hypothesis, we developed a sensitive analytical derivatization method for the detection of gyromitrin using 2,4-dinitrobenzaldehyde as the derivatization reagent. In total, we analyzed 66 specimens for the presence of gyromitrin over 105 tests. Moreover, we sequenced the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and nuc 28S rDNA to assist in species identification and to infer a supporting phylogenetic tree. We detected gyromitrin in all tested specimens from the G. esculenta group as well as G. leucoxantha. This distribution is consistent with a model of rapid evolution coupled with horizontal transfer, which is typical for secondary metabolites. We clarified that gyromitrin production in Discinaceae is both discontinuous and more limited than previously thought. Further research is required to elucidate the gyromitrin biosynthesis gene cluster and its evolutionary history in lorchels.
Collapse
Affiliation(s)
- Alden C Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Osama G Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Pamela J Schultz
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103
| | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48103
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| |
Collapse
|
6
|
Li H, Tian Y, Menolli N, Ye L, Karunarathna SC, Perez-Moreno J, Rahman MM, Rashid MH, Phengsintham P, Rizal L, Kasuya T, Lim YW, Dutta AK, Khalid AN, Huyen LT, Balolong MP, Baruah G, Madawala S, Thongklang N, Hyde KD, Kirk PM, Xu J, Sheng J, Boa E, Mortimer PE. Reviewing the world's edible mushroom species: A new evidence-based classification system. Compr Rev Food Sci Food Saf 2021; 20:1982-2014. [PMID: 33599116 DOI: 10.1111/1541-4337.12708] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Wild mushrooms are a vital source of income and nutrition for many poor communities and of value to recreational foragers. Literature relating to the edibility of mushroom species continues to expand, driven by an increasing demand for wild mushrooms, a wider interest in foraging, and the study of traditional foods. Although numerous case reports have been published on edible mushrooms, doubt and confusion persist regarding which species are safe and suitable to consume. Case reports often differ, and the evidence supporting the stated properties of mushrooms can be incomplete or ambiguous. The need for greater clarity on edible species is further underlined by increases in mushroom-related poisonings. We propose a system for categorizing mushroom species and assigning a final edibility status. Using this system, we reviewed 2,786 mushroom species from 99 countries, accessing 9,783 case reports, from over 1,100 sources. We identified 2,189 edible species, of which 2,006 can be consumed safely, and a further 183 species which required some form of pretreatment prior to safe consumption or were associated with allergic reactions by some. We identified 471 species of uncertain edibility because of missing or incomplete evidence of consumption, and 76 unconfirmed species because of unresolved, differing opinions on edibility and toxicity. This is the most comprehensive list of edible mushrooms available to date, demonstrating the huge number of mushrooms species consumed. Our review highlights the need for further information on uncertain and clash species, and the need to present evidence in a clear, unambiguous, and consistent manner.
Collapse
Affiliation(s)
- Huili Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nelson Menolli
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil.,Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil
| | - Lei Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Samantha C Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | | | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | - Leela Rizal
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | - Taiga Kasuya
- Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, Barasat, West Bengal, India
| | | | - Le Thanh Huyen
- Department of Toxicology and Environmental Monitoring, Faculty of Environment, Hanoi University of Natural Resources and Environment, Tu Liem North District, Hanoi, Vietnam
| | - Marilen Parungao Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines, Manila, the Philippines
| | - Gautam Baruah
- Balipara Tract and Frontier Foundation, Guwahati, Assam, India
| | - Sumedha Madawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand.,Mushroom Research Foundation, Chiang Mai, Thailand
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, UK
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Jun Sheng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Eric Boa
- Institute of Biology, University of Aberdeen, Aberdeen, UK
| | - Peter E Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| |
Collapse
|