1
|
Bao L, Chen X, Li Y, Zhu G, Wang J, Chen M, Bian X, Gu Q, Zhang Y, Lin F. Nano-sized heterogeneous photocatalyst Fe 3O 4@V/TiO 2-catalyzed synthesis and antimycobacterial evaluation of 2-substituted benzimidazoles. Mol Divers 2025:10.1007/s11030-024-11085-3. [PMID: 39836354 DOI: 10.1007/s11030-024-11085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
The 2-substituted benzimidazole has emerged as a promising heterocyclic compound in the field of drug design. In pursuit of more sustainable photocatalysts for 2-substituted benzimidazole synthesis, the method for coating Fe3O4 with V-doped TiO2 was presented. On the base of characterizing composition, morphology, and properties, the prepared nano-sized Fe3O4@V/TiO2 composites were used as a heterogeneous photocatalyst to catalyze the synthesis of 2-substituted benzimidazoles under light. The photocatalyst Fe3O4@V/TiO2 composites showed the enhanced photocatalytic activity compared to no V-doped Fe3O4@TiO2, being able to yield various 2-substituted benzimidazoles in moderate to good yield with recyclability and stability. A possible photocatalysis mechanism was investigated. It was evident that holes, singlet oxygen, and ·O2̄ radical played important roles in the synthesis of 2-substituted benzimidazole. Moreover, some of the obtained products were demonstrated excellent antibacterial activity.
Collapse
Affiliation(s)
- Lijian Bao
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Xiaodong Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Yanli Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Guangyuan Zhu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Jingjun Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Mingyue Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Xingyu Bian
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| | - Feng Lin
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| |
Collapse
|
2
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
3
|
Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Ponchio C, Hunsom M. Ultra-fast green synthesis of a defective TiO 2 photocatalyst towards hydrogen production. RSC Adv 2024; 14:24213-24225. [PMID: 39101062 PMCID: PMC11295141 DOI: 10.1039/d4ra04284k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
An ultra-fast green synthesis of defective titanium dioxide (TiO2) photocatalysts was conducted by the microwave-assisted method using l-ascorbic acid (l-As) as a reducing agent. Effect of l-As concentrations on the chemical-, optical- and photoelectrochemical properties as well as the photocatalytic performance towards the hydrogen (H2) production was explored. The obtained TiO2 nanoparticles (NPs) illustrated the brown fine powders with different brownness levels depending on the concentrations of l-As. A high l-As concentration provided a high brownness of TiO2 NPs with a high generation of Ti3+ defects and oxygen vacancies (Ov), which can extend the light absorption towards the visible and near-infrared regions, suppress the recombination rate of electron-hole pairs, promote the photocurrent response and minimize the interface charge transfer resistance. An appropriate quantity of generated defects and good porous properties played a crucial role in photocatalytic H2 production. Under fluorescence illumination, the sample synthesized with a TiO2 and l-As weight ratio of 1 : 0.25 (PAs0.25) exhibited the highest H2 production rate (∼162 μmol g-1 h-1 in the presence of 1 wt% Au co-catalyst) with a slight drop (∼8.2%) after the 5th use (15 h). The synthesis method proposed in this work provides a new insight to an ultra-fast synthesis of defective TiO2 NPs using an eco-friendly chemical precursor under non-severe conditions.
Collapse
Affiliation(s)
- Naphaphan Kunthakudee
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Phuttamonthon 4 Road Nakhon Pathom 73170 Thailand
| | - Tarawipa Puangpetch
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University Nakhon Pathom 73000 Thailand
| | - Prakorn Ramakul
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University Nakhon Pathom 73000 Thailand
| | - Karn Serivalsatit
- Department of Materials Science, Faculty of Science, Chulalongkorn University Phayathai Road, Pathumwan Bangkok 10330 Thailand
- Photocatalysts for Clean Environment and Energy Research Unit, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Chatchai Ponchio
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
| | - Mali Hunsom
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University Phuttamonthon 4 Road Nakhon Pathom 73170 Thailand
- Associate Fellow of Royal Society of Thailand (AFRST) Bangkok 10300 Thailand
- Advanced Microfabrication and Biomaterial for Organ-on-chip Research Unit (AMBiO), Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| |
Collapse
|
4
|
Liu R, Yu Z, Zhang R, Xiong J, Qiao Y, Liu X, Lu X. Hollow Nanoreactors for Controlled Photocatalytic Behaviors: Fundamental Theory, Structure-Performance Relationship, and Catalytic Advantages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308142. [PMID: 37984879 DOI: 10.1002/smll.202308142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.
Collapse
Affiliation(s)
- Runyu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Xinzhong Liu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fujian, 350108, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
5
|
Wen Z, Ding L, Zhang M, You F, Yuan R, Wei J, Qian J, Wang K. A membrane/mediator-free high-power density dual-photoelectrode PFC aptasensor for lincomycin detection in milk and chicken. Anal Chim Acta 2023; 1245:340880. [PMID: 36737139 DOI: 10.1016/j.aca.2023.340880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Over use of lincomycin (LIN) as antibiotic in animals can lead to multiple harmful impacts to public health, thus detection of LIN at trace level in milk and chicken sample matrixes is vital. In this work, Zinc phthalocyanine nanoparticles sensitized MoS2 (ZnPc/MoS2) was firstly developed as a novel photocathode material combined with nitrogen-doped graphene-loaded TiO2 nanoparticles (TiO2/NG) as photoanode material to construct a dual-photoelectrode photofuel cell (PFC). The as-prepared membrane/mediator-free PFC achieved excellent output performance that the maximum power density (Pmax) reached 11.83 μW cm-2. Specific aptamers are adopted as LIN recognition elements, the as-proposed self-powered aptasensor for LIN exhibited a linear scope in 10-11 -10-5 mol L-1 along with a low detection limit (3S/N) of 3.33 pmol L-1. Consequently, such high-power density dual-photoelectrode PFC aptasensor may be a reassuring candidate electrochemical sensor for the detection of trace contamination in food samples.
Collapse
Affiliation(s)
- Zuorui Wen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, PR China
| | - Lijun Ding
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Meng Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Fuheng You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ruishuang Yuan
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Wei
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
6
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
7
|
An M, Li L, Gao X, Zhu Y, Guan J, Wu Q. The improved photocatalytic performance of the gully-like CdS-APS@TiO2-ZrO2 composite by constructing Z-scheme heterojunction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Zhu Q, Pan D, Sun Y, Qi D. Controllable Microemulsion Synthesis of Hybrid TiO 2-SiO 2 Hollow Spheres and Au-Doped Hollow Spheres with Enhanced Photocatalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4001-4013. [PMID: 35290732 DOI: 10.1021/acs.langmuir.1c03484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hollow structures in TiO2 materials can enhance the photocatalytic properties by reducing the diffusion length and improving the accessibility of active sites for the reactants. However, existing approaches for preparing hollow TiO2 materials have two drawbacks that restrict their engineering applicability: first, a heavy reliance on templates to form a hollow structure, which makes the preparation laborious, complicated, and costly; second, difficult-to-achieve high crystallization while maintaining the small grain size in calcinated TiO2, which is crucial for enhancing photocatalytic activity. Herein, a simple, effective method is proposed that not only enables the preparation of hybrid TiO2-SiO2 hollow spheres without the template fabrication and removal process via microemulsion technology but also achieves both high crystallization and a small grain size in calcinated TiO2 at once through the calcination of amorphous TiO2 with organosilane at a high temperature of 850 °C. The prepared TiO2-SiO2 hollow spheres with tunable sizes demonstrate high photocatalytic activity with a maximum k value of 133.74 × 10-3 min-1, which is superior to commercial photocatalyst P25 (k = 114.97 × 10-3 min-1). In addition, Au can be doped in the hybrid TiO2-SiO2 shell to gain Au-doped hollow spheres that show a high k value of up to 694.14 × 10-3 min-1, which is 6 times larger than that of P25 and much better than that reported in the literature. This study not only provides an effective approach to stabilize and tune the grain growth of the TiO2 photocatalyst during calcination but also enables the simple preparation of hollow TiO2-based materials with controllable hollow nanostructures.
Collapse
Affiliation(s)
- Qiangtao Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongyu Pan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Li X, Li N, Gao Y, Ge L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63863-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
An Efficient Photocatalytic Synthesis of Benzimidazole over Cobalt-loaded TiO2 catalysts under Solar light irradiation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Huang S, Qin C, Niu L, Wang J, Sun J, Dai L. Strategies for preparing TiO 2/CuS nanocomposites with cauliflower-like protrusions for photocatalytic water purification. NEW J CHEM 2022. [DOI: 10.1039/d2nj00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and controllable method was developed to prepare TiO2/CuS nanocomposites with high photocatalytic efficiency.
Collapse
Affiliation(s)
- Sihui Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuanxiang Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Linyan Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - JianJun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lixing Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Qiang C, Li N, Zuo S, Guo Z, Zhan W, Li Z, Ma J. Microwave-assisted synthesis of RuTe2/black TiO2 photocatalyst for enhanced diclofenac degradation: Performance, mechanistic investigation and intermediates analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Soleimani M, Ghasemi JB, Badiei A. Black titania; novel researches in synthesis and applications. INORG CHEM COMMUN 2022; 135:109092. [DOI: 10.1016/j.inoche.2021.109092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Qi Z, Yang Y, Miao T, Li L, Fu X. Progress in Photocatalytic Synthesis of Benzimidazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhulin Qi
- College of Chemistry and Material Science Huaibei Normal University Huaibei China 235000
| | - Yang Yang
- College of Chemistry and Material Science Huaibei Normal University Huaibei China 235000
- School of Chemistry and Chemical Engineering Nanjing University of Science & Technology Nanjing China 21009
| | - Tao Miao
- College of Chemistry and Material Science Huaibei Normal University Huaibei China 235000
| | - Longfeng Li
- College of Chemistry and Material Science Huaibei Normal University Huaibei China 235000
| | - Xianliang Fu
- College of Chemistry and Material Science Huaibei Normal University Huaibei China 235000
| |
Collapse
|
15
|
Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, Vidic J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2700. [PMID: 34685143 PMCID: PMC8538910 DOI: 10.3390/nano11102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.
Collapse
Affiliation(s)
- Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Marko Radovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Priya Vizzini
- Department of Agriculture Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Stefan Jaric
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Zoran Pavlovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Vasa Radonic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| |
Collapse
|
16
|
Lyu B, Guo X, Cheng K, Gao D, Ma J, Yang N, Zhao S, Liu C, Warda B, Qin J. Construction of Double-Shell Hollow TiO 2 toward Solvent-Free Polyurethane Films. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
- Zhejiang Hexin Holdings Ltd., Zhejiang 314000, China
| | - Xu Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Kun Cheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Na Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Shunhua Zhao
- Zhejiang Hexin Holdings Ltd., Zhejiang 314000, China
| | - Chao Liu
- Shaanxi Collaborat Innovat Center of Industrial Auxiliary Chemistry, Shaanxi University of Science and Technology, Xi’an 710021, Shaanxi, China
| | - Baig Warda
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Jianbin Qin
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
17
|
Anisotropic morphology, formation mechanisms, and fluorescence properties of zirconia nanocrystals. Sci Rep 2020; 10:13904. [PMID: 32807806 PMCID: PMC7431419 DOI: 10.1038/s41598-020-70570-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022] Open
Abstract
ZrO2 nanocrystals with spheres and elongated platelets were systemically prepared through a simple hydrothermal method by the use of ZrOCl2·8H2O and CH3COOK as raw materials. The anisotropic morphology and formation mechanism of the monoclinic and/or tetragonal ZrO2 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, and high-resolution transmission electron microscope techniques. The uniform elongated platelets and star-like structures were composed of short nanorods with a diameter of approximately 5 nm and a length of approximately 10 nm. The different morphologies were formed due to the different contents of CH3COO- and Cl- and their synergy. The fluorescence band position and the band shape remained about the same for excitation wavelengths below 290 nm and the different morphologies of the nanocrystals.
Collapse
|
18
|
Banitalebi Dehkordi A, Ziarati A, Ghasemi JB, Badiei A. Preparation of hierarchical g-C3N4@TiO2 hollow spheres for enhanced visible-light induced catalytic CO2 reduction. SOLAR ENERGY 2020; 205:465-473. [DOI: 10.1016/j.solener.2020.05.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
19
|
Hierarchically nanostructured bimetallic NiCo/MgxNiyO catalyst with enhanced activity for phenol hydrogenation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Li D, Song H, Meng X, Shen T, Sun J, Han W, Wang X. Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-Treated TiO 2. NANOMATERIALS 2020; 10:nano10030546. [PMID: 32197421 PMCID: PMC7153365 DOI: 10.3390/nano10030546] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 11/23/2022]
Abstract
Particle size of nanomaterials has significant impact on their photocatalyst properties. In this paper, TiO2 nanoparticles with different crystalline sizes were prepared by adjusting the alkali-hydrothermal time (0–48 h). An annealing in N2 atmosphere after hydrothermal treatment caused TiO2 reduction and created defects, resulting in the visible light photocatalytic activity. The evolution of physicochemical properties along with the increase of hydrothermal time at a low alkali concentration has been revealed. Compared with other TiO2 samples, TiO2-24 showed higher photocatalytic activity toward degrading Rhodamine B and Sulfadiazine under visible light. The radical trapping and ESR experiments revealed that O2•- is the main reactive specie in TiO2-24. Large specific surface areas and rapid transfer of photogenerated electrons are responsible for enhancing photocatalytic activity. The above findings clearly demonstrate that particle size and surface oxygen defects can be regulated by alkali-hydrothermal method. This research will deepen the understanding of particle size on the nanomaterials performance and provide new ideas for designing efficient photocatalysts.
Collapse
Affiliation(s)
- Danqi Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (H.S.); (X.M.); (T.S.); (W.H.)
| | - Hongchen Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (H.S.); (X.M.); (T.S.); (W.H.)
| | - Xia Meng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (H.S.); (X.M.); (T.S.); (W.H.)
| | - Tingting Shen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (H.S.); (X.M.); (T.S.); (W.H.)
| | - Jing Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (H.S.); (X.M.); (T.S.); (W.H.)
- Correspondence: (J.S.); (X.W.)
| | - Wenjia Han
- State Key Laboratory of Biobased Material and Green Papermaking, School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (H.S.); (X.M.); (T.S.); (W.H.)
| | - Xikui Wang
- College of Environmental Science and Engineering, Shandong Agriculture and Engineering University, Jinan 251100, China
- Correspondence: (J.S.); (X.W.)
| |
Collapse
|
21
|
Ziarati A, Badiei A, Luque R, Dadras M, Burgi T. Visible Light CO 2 Reduction to CH 4 Using Hierarchical Yolk@shell TiO 2–xH x Modified with Plasmonic Au–Pd Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:3689-3696. [DOI: 10.1021/acssuschemeng.9b06751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Affiliation(s)
- Abolfazl Ziarati
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614418, Iran
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614418, Iran
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, E-14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russia
| | - Massoud Dadras
- CSEM Centre Suisse d’Electronique et de and Microtecnique SA, Jaquet-Droz 1, Case Postal, 2002 Neuchâtel, Switzerland
| | - Thomas Burgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
22
|
Zhang M, Zhang Z, Xu Y, Wen Z, Ding C, Guo Y, Wang K. A novel self-powered aptasensor for digoxin monitoring based on the dual-photoelectrode membrane/mediator-free photofuel cell. Biosens Bioelectron 2020; 156:112135. [PMID: 32174560 DOI: 10.1016/j.bios.2020.112135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Self-powered sensor is considered as a promising, rapid, portable and miniaturized detection device that can work without external power input. In this work, a novel dual-photoelectrode self-powered aptasensor for digoxin detection was designed on the basis of a photofuel cell (PFC) composed of a black TiO2 (B-TiO2) photoanode and a CuBr photocathode in a single-chamber cell. The sensing platform avoided the use of membrane, free mediator, bioactive components and costly metal Pt electrodes. The large inherent bias between the Fermi energy level of B-TiO2 and that of CuBr improved the electricity output of PFC that the open circuit potential (OCP) and the maximum power density (Pmax) reached 0.58 V and 6.78 μW cm-2 respectively. Based on the excellent output of PFC, digoxin aptamer was immobilized on photoanode as the recognition element to capture digoxin molecules, which realized the high sensitive and selective detection of digoxin. The self-powered aptasensor displayed a broad linear in the range from 10-12 M to 10-5 M with a detection limit (3 S/N) of 0.33 pM. This work paved a luciferous way for further rapid, portable, miniaturized and on-site self-powered sensors.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhenzhen Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhuan Xu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zuorui Wen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, PR China.
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
23
|
Ji ST, Wang QQ, Zhou J, Xu G, Shi WY. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol. NUCLEAR SCIENCE AND TECHNIQUES 2020; 31:22. [DOI: 10.1007/s41365-020-0726-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 06/21/2023]
|
24
|
Yao J, Zhang M, Yin H, Arif M, Liu X. Formation mechanism of porous rose-like WO 3 and its photoresponse and stability study. CrystEngComm 2020. [DOI: 10.1039/d0ce00185f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fabrication of rose-like WO3 by chemical bath method.
Collapse
Affiliation(s)
- Jiacheng Yao
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Min Zhang
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Hongfei Yin
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Muhammad Arif
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
25
|
Rohani S, Mohammadi Ziarani G, Ziarati A, Badiei A. Designer 3D CoAl-layered double hydroxide@N, S doped graphene hollow architecture decorated with Pd nanoparticles for Sonogashira couplings. APPLIED SURFACE SCIENCE 2019; 496:143599. [DOI: 10.1016/j.apsusc.2019.143599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
26
|
Ghafuri H, Jafari G, Rashidizadeh A, Manteghi F. Co2+ immobilized on highly ordered mesoporous graphitic carbon nitride (ompg-C3N4/Co2+) as an efficient and recyclable heterogeneous catalyst for one-pot tandem selective photo-oxidation/Knoevenagel condensation. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Versatile titanium dioxide nanoparticles prepared by surface-grown polymerization of polyethylenimine for photodegradation and catalytic C C bond forming reactions. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Abstract
Photocatalysis is a multifunctional phenomenon that can be employed for energy applications such as H2 production, CO2 reduction into fuels, and environmental applications such as pollutant degradations, antibacterial disinfection, etc. In this direction, it is not an exaggerated fact that TiO2 is blooming in the field of photocatalysis, which is largely explored for various photocatalytic applications. The deeper understanding of TiO2 photocatalysis has led to the design of new photocatalytic materials with multiple functionalities. Accordingly, this paper exclusively reviews the recent developments in the modification of TiO2 photocatalyst towards the understanding of its photocatalytic mechanisms. These modifications generally involve the physical and chemical changes in TiO2 such as anisotropic structuring and integration with other metal oxides, plasmonic materials, carbon-based materials, etc. Such modifications essentially lead to the changes in the energy structure of TiO2 that largely boosts up the photocatalytic process via enhancing the band structure alignments, visible light absorption, carrier separation, and transportation in the system. For instance, the ability to align the band structure in TiO2 makes it suitable for multiple photocatalytic processes such as degradation of various pollutants, H2 production, CO2 conversion, etc. For these reasons, TiO2 can be realized as a prototypical photocatalyst, which paves ways to develop new photocatalytic materials in the field. In this context, this review paper sheds light into the emerging trends in TiO2 in terms of its modifications towards multifunctional photocatalytic applications.
Collapse
|
29
|
Zhu J, Chen J, Xu H, Sun S, Xu Y, Zhou M, Gao X, Sun Z. Plasma-Introduced Oxygen Defects Confined in Li 4Ti 5O 12 Nanosheets for Boosting Lithium-Ion Diffusion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17384-17392. [PMID: 31021603 DOI: 10.1021/acsami.9b02102] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although Li4Ti5O12 (LTO) is considered as a promising anode material for high-power Li-ion batteries with high safety, the sluggish Li-ion diffusion coefficient restricts its widespread application. In this work, oxygen vacancy was successfully incorporated into LTO by an eco-friendly and cost-effective plasma process. The deficient LTO delivers much higher capacities of 173.4 mAh g-1 at 1C rate after 100 cycles and 140.5 mAh g-1 at 5C after 1000 cycles than those of pristine LTO. Meanwhile, even at a high rate of 20C, it displays an ultrahigh capacity of 133.1 mAh g-1 after 500 cycles with a Coulombic efficiency of 100%. Detailed analysis reveals that the lithium storage mechanisms in the oxygen-deficient LTO, especially at high rate, were dominated by the insertion behavior and dual-phase conversion due to the fast ion-diffusion ability, rather than the widely reported surface capacitance by other approaches. This work highlights that defect generation by plasma in nanomaterials is an effective way to promote ion mobility, especially at high rates, and thus can be extended to other electrode materials for advanced energy-storage applications.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| | - Jian Chen
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| | - Hui Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| | - Shangqi Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| | - Yang Xu
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - Min Zhou
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| | - Xue Gao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| | - Zhengming Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
30
|
Preparation of a Bi2WO6 catalyst and its catalytic performance in an alpha alkylation reaction under visible light irradiation. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Ziarati A, Badiei A, Grillo R, Burgi T. 3D Yolk@Shell TiO 2- x/LDH Architecture: Tailored Structure for Visible Light CO 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5903-5910. [PMID: 30648384 DOI: 10.1021/acsami.8b17232] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CO2 photoconversion into hydrocarbon solar fuels by engineered semiconductors is considered as a feasible plan to address global energy requirements in times of global warming. In this regard, three-dimensional yolk@shell hydrogenated TiO2/Co-Al layered double hydroxide (3D Y@S TiO2- x/LDH) architecture was successfully assembled by sequential solvothermal, hydrogen treatment, and hydrothermal preparation steps. This architecture revealed a high efficiency for the photoreduction of CO2 to solar fuels, without a noble metal cocatalyst. The time-dependent experiment indicated that the production of CH3OH was almost selective until 2 h (up to 251 μmol/gcat. h), whereas CH4 was produced gradually by increasing the time of reaction to 12 h (up to 63 μmol/gcat. h). This significant efficiency can be ascribed to the engineering of 3D Y@S TiO2- x/LDH architecture with considerable CO2 sorption ability in mesoporous yolk@shell structure and LDH interlayer spaces. Also, oxygen vacancies in TiO2- x could provide excess sites for sorption, activation, and conversion of CO2. Furthermore, the generated Ti3+ ions in the Y@S TiO2 structure as well as connecting of structure with LDH plates can facilitate the charge separation and decrease the band gap of nanoarchitecture to the visible region.
Collapse
Affiliation(s)
- Abolfazl Ziarati
- School of Chemistry, College of Science , University of Tehran , Tehran 1417614418 , Iran
- Department of Physical Chemistry , University of Geneva , 30 Quai Ernest-Ansermet , Geneva 4 1211 , Switzerland
| | - Alireza Badiei
- School of Chemistry, College of Science , University of Tehran , Tehran 1417614418 , Iran
| | - Rossella Grillo
- Department of Physical Chemistry , University of Geneva , 30 Quai Ernest-Ansermet , Geneva 4 1211 , Switzerland
| | - Thomas Burgi
- Department of Physical Chemistry , University of Geneva , 30 Quai Ernest-Ansermet , Geneva 4 1211 , Switzerland
| |
Collapse
|
32
|
Li A, Zhu W, Li C, Wang T, Gong J. Rational design of yolk–shell nanostructures for photocatalysis. Chem Soc Rev 2019; 48:1874-1907. [DOI: 10.1039/c8cs00711j] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Yolk–shell structures provide an ideal platform for the rational regulation and effective utilization of charge carriers because of their void space and large surface areas. Furthermore, the efficiency of charge behavior in every step can be further improved by many strategies. This review describes the synthesis of yolk–shell structures and their effect for the enhancement of heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Wenjin Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Chengcheng Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Tuo Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| |
Collapse
|
33
|
Ziarati A, Badiei A, Luque R. Engineered bi-functional hydrophilic/hydrophobic yolk@shell architectures: A rational strategy for non-time dependent ultra selective photocatalytic oxidation. APPLIED CATALYSIS B: ENVIRONMENTAL 2019; 240:72-78. [DOI: 10.1016/j.apcatb.2018.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
34
|
Rimoldi L, Meroni D, Pargoletti E, Biraghi I, Cappelletti G, Ardizzone S. Role of the growth step on the structural, optical and surface features of TiO 2/SnO 2 composites. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181662. [PMID: 30800395 PMCID: PMC6366208 DOI: 10.1098/rsos.181662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
TiO2/SnO2 composites have attracted considerable attention for their application in photocatalysis, fuel cells and sensors. Structural, morphological, optical and surface features play a pivotal role in photoelectrochemical applications and are critically related to the synthetic route. Most of the reported synthetic procedures require high-temperature treatments in order to tailor the sample crystallinity, usually at the expense of surface hydroxylation and morphology. In this work, we investigate the role of a treatment in an autoclave at a low temperature (100°C) on the sample properties and photocatalytic performance. With respect to samples calcined at 400°C, the milder crystallization treatment promotes anatase phase, mesoporosity and water chemi/physisorption, while reducing the incorporation of heteroatoms within the TiO2 lattice. The role of Sn content was also investigated, showing a marked influence, especially on the structural properties. Notably, at a high content, Sn favours the formation of rutile TiO2 at very low reaction temperatures (100°C), thanks to the structural compatibility with cassiterite SnO2. Selected samples were tested towards the photocatalytic degradation of tetracycline in water under UV light. Overall, the low-temperature treatment enables to tune the TiO2 phase composition while maintaining its surface hydrophilicity and gives rise to well-dispersed SnO2 at the TiO2 surface.
Collapse
Affiliation(s)
- Luca Rimoldi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Iolanda Biraghi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Silvia Ardizzone
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
35
|
Rohani S, Ziarati A, Ziarani GM, Badiei A, Burgi T. Engineering of highly active Au/Pd supported on hydrogenated urchin-like yolk@shell TiO 2 for visible light photocatalytic Suzuki coupling. Catal Sci Technol 2019; 9:3820-3827. [DOI: 10.1039/c9cy00798a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An engineered hydrogenated urchin-like yolk@shell TiO2 structure decorated with Au/Pd nanoparticles was designed via sequential steps and employed in visible light photocatalytic Suzuki coupling.
Collapse
Affiliation(s)
- Sahar Rohani
- Department of Chemistry
- Faculty of Science
- University of Alzahra
- Tehran
- Iran
| | - Abolfazl Ziarati
- Department of Physical Chemistry
- University of Geneva
- Geneva 4
- Switzerland
- School of Chemistry
| | | | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Thomas Burgi
- Department of Physical Chemistry
- University of Geneva
- Geneva 4
- Switzerland
| |
Collapse
|