1
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
2
|
Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. BIOLOGY 2023; 12:87. [PMID: 36671779 PMCID: PMC9855443 DOI: 10.3390/biology12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
3
|
A Randomized Placebo-Controlled Phase 2 Study of Gemcitabine and Capecitabine with or without T-ChOS as Adjuvant Therapy in Patients with Resected Pancreatic Cancer (CHIPAC). Pharmaceutics 2022; 14:pharmaceutics14030509. [PMID: 35335885 PMCID: PMC8955369 DOI: 10.3390/pharmaceutics14030509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
The antitumor activity of chitooligosaccharides has been suggested. This phase 2 trial evaluated the efficacy and safety of T-ChOS™, in addition to adjuvant chemotherapy, in patients after resection of pancreatic ductal adenocarcinoma (PDAC). In this single-center, randomized, double-blind, placebo-controlled trial using patients ≥18 years of age after complete macroscopic resection for PDAC, patients were randomly assigned (1:1) to either a continuous oral T-ChOS group or a placebo group, in combination with gemcitabine (GEM) and oral capecitabine (CAP), for a maximum of six cycles. The primary endpoint was disease-free survival (DFS). Recruitment was stopped prematurely in July 2018, with 21 of planned 180 patients included, due to poor accrual and because modified FOLFIRINOX replaced GEM/CAP for the target population. Nine patients received T-ChOS and twelve received the placebo. The median DFS was 10.8 months (95% CI 5.9–15.7) for the T-ChOS arm and 8.4 months (95% CI 0–21.5) in the placebo arm. Overall, seven patients (78%) in the T-ChOS arm and eight patients (67%) in the placebo arm experienced at least one grade 3–4 treatment-related adverse event, most frequently neutropenia. Altogether, the addition of T-ChOS to chemotherapy in patients after resection of PDAC seems safe. However, the clinical benefit cannot be assessed due to the premature cessation of the trial.
Collapse
|
4
|
Mallakuntla MK, Penugurti V, Manavathi B, Podile AR. Chitooligosaccharides induce apoptosis in human breast cancer cells. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
5
|
de Andrade RCLC, de Araújo NK, Torres-Rêgo M, Furtado AA, Daniele-Silva A, de Souza Paiva W, de Medeiros Dantas JM, da Silva NS, da Silva-Júnior AA, Ururahy MAG, de Assis CF, De Santis Ferreira L, Rocha HAO, de Freitas Fernandes-Pedrosa M. Production and Characterization of Chitooligosaccharides: Evaluation of Acute Toxicity, Healing, and Anti-Inflammatory Actions. Int J Mol Sci 2021; 22:ijms221910631. [PMID: 34638973 PMCID: PMC8508594 DOI: 10.3390/ijms221910631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
The search for promising biomolecules such as chitooligosaccharides (COS) has increased due to the need for healing products that act efficiently, avoiding complications resulting from exacerbated inflammation. Therefore, this study aimed to produce COS in two stages of hydrolysis using chitosanases derived from Bacillus toyonensis. Additionally, this study aimed to structurally characterize the COS via mass spectrometry, to analyze their biocompatibility in acute toxicity models in vivo, to evaluate their healing action in a cell migration model in vitro, to analyze the anti-inflammatory activity in in vivo models of xylol-induced ear edema and zymosan-induced air pouch, and to assess the wound repair action in vivo. The structural characterization process pointed out the presence of hexamers. The in vitro and in vivo biocompatibility of COS was reaffirmed. The COS stimulated the fibroblast migration. In the in vivo inflammatory assays, COS showed an antiedematogenic response and significant reductions in leukocyte migration, cytokine release, and protein exudate. The COS healing effect in vivo was confirmed by the significant wound reduction after seven days of the experiment. These results indicated that the presence of hexamers influences the COS biological properties, which have potential uses in the pharmaceutical field due to their healing and anti-inflammatory action.
Collapse
Affiliation(s)
- Rafael Caetano Lisbôa Castro de Andrade
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
| | - Nathália Kelly de Araújo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
- Correspondence: (M.T.-R.); (M.d.F.F.-P.)
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
| | - Weslley de Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil; (W.d.S.P.); (H.A.O.R.)
| | - Julia Maria de Medeiros Dantas
- Postgraduate Program in Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Nayara Sousa da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
| | - Marcela Abbott Galvão Ururahy
- Department of Clinical Analysis and Toxicology, College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.G.U.); (C.F.d.A.)
| | - Cristiane Fernandes de Assis
- Department of Clinical Analysis and Toxicology, College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.G.U.); (C.F.d.A.)
| | - Leandro De Santis Ferreira
- Department of Pharmacy, College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Bioscience Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil; (W.d.S.P.); (H.A.O.R.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (R.C.L.C.d.A.); (N.K.d.A.); (A.A.F.); (A.D.-S.); (N.S.d.S.); (A.A.d.S.-J.)
- Correspondence: (M.T.-R.); (M.d.F.F.-P.)
| |
Collapse
|
6
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Yan J, Xu J, Ai S, Zhang K, Yang F, Huang Y. Degradation of chitosan with self-resonating cavitation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
8
|
Effect of electrical discharge plasma on cytotoxicity against cancer cells of N,O-carboxymethyl chitosan-stabilized gold nanoparticles. Carbohydr Polym 2020; 237:116162. [PMID: 32241415 DOI: 10.1016/j.carbpol.2020.116162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Electrical discharge plasma in a liquid phase can generate reactive species, e.g. hydroxyl radical, leading to rapid reactions including degradation of biopolymers. In this study, the effect of plasma treatment time on physical properties and cytotoxicity against cancer cells of N,O-carboxymethyl chitosan-stabilized gold nanoparticles (CMC-AuNPs) was investigated. AuNPs were synthesized by chemical reduction of HAuCl4 in 2 % CMC solution to obtain CMC-AuNPs, before being subjected to the plasma treatment. Results showed that the plasma treatment not only led to the reduction of hydrodynamic diameters of CMC-AuNPs from 400 nm to less than 100 nm by the plasma-induced degradation of CMC but also provided the narrow size distribution of AuNPs having diameters in the range of 2-50 nm, that were existing in CMC-AuNPs. In addition, the plasma-treated CMC-AuNPs could significantly reduce the percentage of cell viability of breast cancer cells by approximately 80 % compared to the original CMC and CMC-AuNPs.
Collapse
|
9
|
Wu M, Li J, An Y, Li P, Xiong W, Li J, Yan D, Wang M, Zhong G. Chitooligosaccharides Prevents the Development of Colitis-Associated Colorectal Cancer by Modulating the Intestinal Microbiota and Mycobiota. Front Microbiol 2019; 10:2101. [PMID: 31620100 PMCID: PMC6759605 DOI: 10.3389/fmicb.2019.02101] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Gut microbes play a crucial role in the development of colorectal cancer. Chitooligosaccharides (COS), are oligomer that are depolymerized from chitosan and possess a wide range of biological activities. In this study, the effects of COS on colorectal cancer (CRC) development were evaluated using azoxymethane and dextran sulfate sodium (AOM/DSS) induced mouse model of CRC (CACM). In the COS-treated CRC group (CMCOS), COS protected mice from CRC by decreasing the disease activity index, tumor incidences and multiplicity, and the mRNA levels of COX-2, IL-6, TNF-α, IL-1β, IL-10, and IKK-β mRNA in colonic epithelial cells. The results of a cage-exchanged experiment, in which mice from the CACMe and CMCOSe treatments exchanged cages every day to interact with microbes, showed that gut microbes play an important role in preventing CAC by COS. The abundances of fecal bacteria (total bacteria, Lactobacillus, Enterococcus, Fusobacterium nucleatum and butyrate-producing bacteria) were detected by qPCR on the 0th, 1st, 3rd, 6th, 9th, and 10th weekends. Furthermore, microbiota and mycobiota were analyzed by high-throughput sequencing on an Illumina MiSeq PE300 system. COS protected mice from CRC by reversing the imbalance of bacteria and fungi, especially by reducing the abundance of Escherichia-Shigella, Enterococcus, and Turicibacter, and increasing the levels of Akkermansia, butyrate-producing bacteria and Cladosporium.
Collapse
Affiliation(s)
- Minna Wu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jianmin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Shaanxi Provincial Second People’s Hospital, Xi’an, China
| | - Yunying An
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Puze Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Wancheng Xiong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jinsong Li
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Genshen Zhong
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|