1
|
Fumarola S, Cianfruglia L, Cecati M, Giammarchi C, Vaiasicca S, Gasparrini M. Polyphenol Intake in Elderly Patients: A Novel Approach to Counteract Colorectal Cancer Risk? Int J Mol Sci 2025; 26:2497. [PMID: 40141143 PMCID: PMC11942013 DOI: 10.3390/ijms26062497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) accounts for approximately 10% of all cancers worldwide with an incidence of approximately 60% in patients older than 70 years. In the elderly, the definition of a better therapeutic strategy depends on several factors including the patient's frailty and comorbidity status, life expectancy, and chemotherapy tolerance. In older patients, adverse drug reactions require a reduction in the dose of treatment, resulting in worse oncologic outcomes. In recent years, an increasing number of studies have focused on the potential effects of polyphenols on human health and their use in cancer therapy. In this comprehensive review, we searched the major databases and summarized experimental data of the most important polyphenols in the CRC chemoprevention, with a focus on the molecular mechanisms involved and the antitumor effects in the elderly population. In vitro and in vivo studies have shown that polyphenols exert chemopreventive activity by modulating cell signaling, resulting in the inhibition of cancer development or progression. However, the efficacy seen in experimental studies has not been confirmed in clinical trials, mainly due to their low bioavailability and non-toxic doses. Further research is needed to increase polyphenol bioavailability and reduce side effects in order to suggest their possible use to increase the efficacy of chemotherapeutic treatment.
Collapse
Affiliation(s)
- Stefania Fumarola
- Advanced Technology Center for Aging Research, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS-INRCA), 60121 Ancona, Italy; (S.F.); (L.C.)
| | - Laura Cianfruglia
- Advanced Technology Center for Aging Research, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS-INRCA), 60121 Ancona, Italy; (S.F.); (L.C.)
| | - Monia Cecati
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Cinzia Giammarchi
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS-INRCA), 60121 Ancona, Italy;
| | - Salvatore Vaiasicca
- Center for Neurobiology of Aging, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS-INRCA), 60121 Ancona, Italy
| | - Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Guo KC, Wang ZZ, Su XQ. Chinese Medicine in Colorectal Cancer Treatment: From Potential Targets and Mechanisms to Clinical Application. Chin J Integr Med 2024:10.1007/s11655-024-4115-8. [PMID: 39331211 DOI: 10.1007/s11655-024-4115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 09/28/2024]
Abstract
Colorectal cancer (CRC) is a global health challenge necessitating innovative therapeutic strategies. There is an increasing trend toward the clinical application of integrative Chinese medicine (CM) and Western medicine approaches. Chinese herbal monomers and formulations exert enhanced antitumor effects by modulating multiple signaling pathways in tumor cells, including inhibiting cell proliferation, inducing apoptosis, suppressing angiogenesis, reversing multidrug resistance, inhibiting metastasis, and regulating immunity. The synergistic effects of CM with chemotherapy, targeted therapy, immunotherapy, and nanovectors provide a comprehensive framework for CRC treatment. CM can mitigate drug toxicity, improve immune function, control tumor progression, alleviate clinical symptoms, and improve patients' survival and quality of life. This review summarizes the key mechanisms and therapeutic strategies of CM in CRC, highlighting its clinical significance. The potential for CM and combination with conventional treatment modalities is emphasized, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Ke-Chen Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zao-Zao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang-Qian Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
4
|
Jiang H, Dong Z, Xia X, Li X. Cathepsins in oral diseases: mechanisms and therapeutic implications. Front Immunol 2023; 14:1203071. [PMID: 37334378 PMCID: PMC10272612 DOI: 10.3389/fimmu.2023.1203071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cathepsins are a type of lysosomal globulin hydrolase and are crucial for many physiological processes, including the resorption of bone matrix, innate immunity, apoptosis, proliferation, metastasis, autophagy, and angiogenesis. Findings regarding their functions in human physiological processes and disorders have drawn extensive attention. In this review, we will focus on the relationship between cathepsins and oral diseases. We highlight the structural and functional properties of cathepsins related to oral diseases, as well as the regulatory mechanisms in tissue and cells and their therapeutic uses. Elucidating the associated mechanism between cathepsins and oral diseases is thought to be a promising strategy for the treatment of oral diseases and may be a starting point for further studies at the molecular level.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Kim SH, Moon JY, Lim YJ. Dietary Intervention for Preventing Colorectal Cancer: A Practical Guide for Physicians. J Cancer Prev 2022; 27:139-146. [PMID: 36258718 PMCID: PMC9537579 DOI: 10.15430/jcp.2022.27.3.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer (CRC) is a disease with high prevalence and mortality. Estimated preventability for CRC is approximately 50%, indicating that altering modifiable factors, including diet and body weight, can reduce CRC risk. There is strong evidence that dietary factors including whole grains, high-fiber, red and processed meat, and alcohol can affect the risk of CRC. An alternative strategy for preventing CRC is use of a chemopreventive supplement that provides higher individual exposure to nutrients than what can be obtained from the diet. These include calcium, vitamin D, folate, n-3 polyunsaturated fatty acids, and phytochemicals. Several intervention trials have shown that these dietary chemopreventives have positive protective effects on development and progression CRC. Research on chemoprevention with phytochemicals that possess anti-inflammatory and/or, anti-oxidative properties is still in the preclinical phase. Intentional weight loss by bariatric surgery has not been effective in decreasing long-term CRC risk. Physicians should perform dietary education for patients who are at high risk of cancer for changing their dietary habits and behaviour. An increased understanding of the role of individual nutrients linked to the intestinal micro-environment and stages of carcinogenesis would facilitate the development of the best nutritional formulations for preventing CRC.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Jeong Yeon Moon
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea,Correspondence to Yun Jeong Lim, E-mail: , https://orcid.org/0000-0002-3279-332X
| |
Collapse
|
6
|
Qufeng Xuanbi Formula Ameliorates Airway Remodeling in Asthmatic Mice by Suppressing Airway Smooth Muscle Cell Proliferation through MEK/ERK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1525110. [PMID: 35186095 PMCID: PMC8849894 DOI: 10.1155/2022/1525110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Asthma is a common chronic respiratory disease. The Qufeng Xuanbi formula (QFXBF), a Chinese herbal decoction, has shown efficacy in the management of asthma. The purpose of this study was to investigate the potential therapeutic effects of QFXBF in the treatment of asthma both in vitro and in vivo. Platelet-derived growth factor (PDGF)-induced airway smooth muscle cell (ASMC) proliferation and MTT assays were used to explore the effects of QFXBF on the proliferation of ASMCs. Moreover, 40 female BALB/c mice were randomly divided into five groups: control group, ovalbumin (OVA) group, high QFXBF group, low QFXBF group, and dexamethasone (DEX) group (n = 8 per group). A mouse allergic asthma model was established using the intranasally administered OVA sensitization method. Morphological changes in the lung tissue were examined by hematoxylin and eosin (H&E) staining and Masson's trichrome staining. Finally, the protein expression of alpha-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), phospho-mitogen-activated protein kinase (p-MEK1/2), mitogen-activated protein kinase (MEK1/2), phospho-extracellular signal-regulated kinases (p-ERK1/2), and extracellular signal-regulated kinases (ERK1/2) in ASMCs and lung tissue were determined by western blotting and immunofluorescent staining assays. PDGF significantly increased the viability of ASMCs. Compared with mice in the control group, the airway walls and airway smooth muscle of mice in the OVA group were thickened, and the number of inflammatory cells around the bronchus significantly increased. Moreover, the administration of QFXBF markedly inhibited the proliferation of ASMCs and alleviated the pathological changes induced by OVA. Furthermore, the protein expressions of p-ERK1/2, p-MEK1/2, PCNA, and α-SMA were significantly increased in OVA-treated mice and PDGF-treated ASMCs. Finally, treatment with QFXBF also significantly decreased the protein expression of p-ERK1/2, p-MEK1/2, α-SMA, and PCNA. QFXBF inhibited the proliferation of ASMCs by suppressing MEK/ERK signaling in PDGF-induced ASMCs and OVA-induced mice.
Collapse
|
7
|
Al-Obeed O, El-Obeid AS, Matou-Nasri S, Vaali-Mohammed MA, AlHaidan Y, Elwatidy M, Al Dosary H, Alehaideb Z, Alkhayal K, Haseeb A, McKerrow J, Ahmad R, Abdulla MH. Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling. Cancer Cell Int 2020; 20:126. [PMID: 32322173 PMCID: PMC7161222 DOI: 10.1186/s12935-020-01206-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal carcinoma is one of the most deadly cancers that requests effective and safe chemotherapy. Evaluation of natural product-based anticancer drugs as adjuvant treatment with fewer side effects is largely unexplored research fields. Herbal melanin (HM) is an extract of the seed coats of Nigella sativa that modulates an inflammatory response through toll-like receptor 4 (TLR4). This TLR4 receptor is also involved in the modulation of apoptosis. We therefore explored the anticancer potential of HM and specifically its effect on the molecular mechanisms underlying adenocarcinoma and metastatic colorectal cancer (mCRC) cell death in vitro. Methods Cell viability was evaluated using the MTT assay. Cellular reactive oxygen species (ROS), glutathione levels, and apoptotic status were assessed using fluorometric and colorimetric detection methods. HM-induced apoptotic and other signaling pathways were investigated using Western blot technology and mitochondrial transition pore assay kit. TLR4 receptor downregulation and blockade were performed using siRNA technology and neutralizing antibody, respectively. Results Our results showed that HM inhibited the proliferation of the colorectal adenocarcinoma HT29 and mCRC SW620 cell lines. Furthermore, HM enhanced ROS production and decreased glutathione levels. HM-induced apoptosis was associated with mitochondrial outer membrane permeability and cytochrome c release, inhibition of the Bcl2 family proteins, and activation of caspase-3/-7. In addition, HM modulated MAPK pathways by activating the JNK pathway and by inhibiting ERK phosphorylation. TLR4 receptor downregulation enhanced HM-induced apoptosis while TLR4 receptor blockade partially alleviated HM-inhibited ERK phosphorylation. Conclusion Altogether, these findings indicate that HM exerts pro-apoptotic effects and inhibits MAPK pathway through TLR4 in mCRC and colorectal adenocarcinoma cells, suggesting HM as a promising natural-based drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Omar Al-Obeed
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Adila Salih El-Obeid
- 2Department of Biobank, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia.,3Faculty of Pharmacology, Ahfad University for Women, Khartoum, Sudan
| | - Sabine Matou-Nasri
- 4Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Yazeid AlHaidan
- 4Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Mohammed Elwatidy
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Hamad Al Dosary
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Zeyad Alehaideb
- 4Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Khayal Alkhayal
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Adil Haseeb
- 5Department of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - James McKerrow
- 6Skaggs School of Pharmacy and Pharmaceutical Chemistry, University of California, La Jolla, San Diego, CA USA
| | - Rehan Ahmad
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| | - Maha-Hamadien Abdulla
- 1Colorectal Research Chair, Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, PO Box 7805 (37), Riyadh, 11472 Saudi Arabia
| |
Collapse
|
8
|
Potočnjak I, Šimić L, Gobin I, Vukelić I, Domitrović R. Antitumor activity of luteolin in human colon cancer SW620 cells is mediated by the ERK/FOXO3a signaling pathway. Toxicol In Vitro 2020; 66:104852. [PMID: 32268164 DOI: 10.1016/j.tiv.2020.104852] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023]
Abstract
The aim of this study was to investigate the mechanism of the anticancer activity of luteolin in metastatic human colon cancer SW620 cells. Luteolin dose-dependently reduced the viability and proliferation of SW620 cells and increased the expression of antioxidant enzymes. The expression of antiapoptotic protein Bcl-2 decreased whereas the expression of proapoptotic proteins Bax and caspase-3 increased by luteolin treatment, resulting in increased poly (ADP-ribose) polymerase (PARP) cleavage and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity. Luteolin also increased the expression of autophagic proteins Beclin-1, autophagy-related protein 5 (Atg5) and microtubule-associated protein 1A/1B-light chain 3 beta-I/II (LC3B-I/II), while the usage of 3-methyladenine suggested a prosurvival role of autophagy. Moreover, treatment with luteolin induced reversal of the epithelial-mesenchymal transition process through the suppression of the wingless-related integration site protein (Wnt)/β-catenin pathway. The cytotoxic activity of luteolin coincided with the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and forkhead box O3a (FOXO3a). Treatment with the mitogen-activated protein kinase kinase (MEK) inhibitor PD0325901 inhibited ERK-dependent FOXO3a phosphorylation, resulting in increased FOXO3a expression and apoptosis, with the suppression of autophagy. The results of the current study suggest the antitumor activity of luteolin in SW620 cells through the ERK/FOXO3a-dependent mechanism, as well as its antimetastatic potential.
Collapse
Affiliation(s)
- Iva Potočnjak
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lidija Šimić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Iva Vukelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
9
|
Ahmed K, Zaidi SF, Cui ZG, Zhou D, Saeed SA, Inadera H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncol Lett 2019; 18:487-498. [PMID: 31289520 PMCID: PMC6540497 DOI: 10.3892/ol.2019.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among men and women. Chemo-resistance, adverse effects and disease recurrence are major challenges in the development of effective cancer therapeutics. Substantial literature on this subject highlights that populations consuming diets rich in fibers, fruits and vegetables have a significantly reduced incidence rate of CRC. This chemo-preventive effect is primarily associated with the presence of phytochemicals in the dietary components. Plant-derived chemical agents act as a prominent source of novel compounds for drug discovery. Phytochemicals have been the focus of an increasing number of studies due to their ability to modulate carcinogenic processes through the alteration of multiple cancer cell survival pathways. Despite promising results from experimental studies, only a limited number of phytochemicals have entered into clinical trials. The purpose of the current review is to compile previously published pre-clinical and clinical evidence of phytochemicals in cases of CRC. A PubMed, Google Scholar and Science Direct search was performed for relevant articles published between 2008-2018 using the following key terms: 'Phytochemicals with colorectal cancers', 'apoptosis', 'cell cycle', 'reactive oxygen species' and 'clinical anticancer activities'. The present review may aid in identifying the most investigated phytochemicals in CRC cells, and due to the limited number of studies that make it from the laboratory bench to clinical trial stage, may provide a novel foundation for future research.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Dejun Zhou
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Sheikh Abdul Saeed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Zimu Guo
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Pengfei Zhu
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Jia Chen
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Yongye Huang
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| |
Collapse
|
11
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
12
|
Block KI, Block PB, Gyllenhaal C. Integrative Treatment for Colorectal Cancer: A Comprehensive Approach. J Altern Complement Med 2018; 24:890-901. [PMID: 30247965 DOI: 10.1089/acm.2018.0125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A comprehensive approach to integrative treatment of colorectal cancer (CRC) patients involves three spheres of intervention: lifestyle, biology, and conventional treatment. Individualization of treatment is emphasized. The lifestyle sphere includes nutritional therapies, biobehavioral strategies with circadian interventions, and physical care modalities. The biology sphere comprises six host factors in the patient's internal biochemical environment or "terrain": inflammation, glycemia, oxidative stress, immune dysregulation, coagulopathy, and stress chemistries. Laboratory testing of these factors guides integrative lifestyle and supplement recommendations. The conventional treatment sphere includes individualized lifestyle recommendations, and supplements or drugs used to enhance tolerability or effectiveness of conventional treatments. Innovative strategies are implemented, including chronomodulated chemotherapy, chemosensitivity testing, and using results of molecular genomic testing to guide nutritional infusions and supplement recommendations. In the lifestyle sphere, substantial evidence from cohort studies supports recommendations for a diet that emphasizes plant and fish proteins, healthful fats in amounts that are tailored to the clinical circumstance of the patient, and carbohydrates based on unrefined whole grains, vegetables and whole fruits. High glycemic diets and refined carbohydrates, especially sugar-sweetened beverages, should be avoided. Biobehavioral strategies include practice of the relaxation response and related approaches. In addition, specific strategies to promote robust circadian organization (CO) are used to combat quality of life concerns and worsened survival that accompany disrupted CO. Physical activity, including aerobic activity and muscle strengthening, is recommended at all disease stages. In the biology sphere, supplements and lifestyle recommendations for inflammation and glycemia are discussed. In the conventional treatment sphere, supplements and innovative and complementary therapies that may remedy treatment toxicities are reviewed. Approaching CRC treatment with a comprehensive, individualized intervention enables safe and beneficial outcomes in this patient population, which can vary widely in individual biology, treatment toxicities, and disease complications. Further research in integrative therapies for CRC patients is needed.
Collapse
Affiliation(s)
- Keith I Block
- Block Center for Integrative Cancer Treatment , Skokie, IL
| | - Penny B Block
- Block Center for Integrative Cancer Treatment , Skokie, IL
| | | |
Collapse
|
13
|
Carlson A, Alderete KS, Grant MKO, Seelig DM, Sharkey LC, Zordoky BNM. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Vet Comp Oncol 2017; 16:253-261. [PMID: 29235249 DOI: 10.1111/vco.12375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation.
Collapse
Affiliation(s)
- A Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - K S Alderete
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - M K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - D M Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - L C Sharkey
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - B N M Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Peng Q, Deng Z, Pan H, Gu L, Liu O, Tang Z. Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol Lett 2017; 15:1379-1388. [PMID: 29434828 DOI: 10.3892/ol.2017.7491] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2017] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is associated with tumor cell proliferation, differentiation, apoptosis, angiogenesis, invasion and metastasis. The present review assesses the involvement of the MAPK signaling pathway in oral cancer progression and invasion based on analysis of individual sub-pathways and their mechanisms of action. The regulation of this pathway for targeted oral cancer therapy is explored and the challenges confronting this, as well as corresponding potential solutions, are discussed. Exploring this pathway with an emphasis on its components, subfamilies, sub-pathways, interactions with other pathways and clinical practice modes may improve oral cancer treatment.
Collapse
Affiliation(s)
- Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiyuan Deng
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hao Pan
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liqun Gu
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ousheng Liu
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
15
|
Latorre E, Birar VC, Sheerin AN, Jeynes JCC, Hooper A, Dawe HR, Melzer D, Cox LS, Faragher RGA, Ostler EL, Harries LW. Small molecule modulation of splicing factor expression is associated with rescue from cellular senescence. BMC Cell Biol 2017; 18:31. [PMID: 29041897 PMCID: PMC5645932 DOI: 10.1186/s12860-017-0147-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque. Accordingly we developed a novel panel of small molecules based on resveratrol, previously suggested to alter mRNA splicing, to determine whether altered splicing factor expression had potential to influence features of replicative senescence. Results Treatment with resveralogues was associated with altered splicing factor expression and rescue of multiple features of senescence. This rescue was independent of cell cycle traverse and also independent of SIRT1, SASP modulation or senolysis. Under growth permissive conditions, cells demonstrating restored splicing factor expression also demonstrated increased telomere length, re-entered cell cycle and resumed proliferation. These phenomena were also influenced by ERK antagonists and agonists. Conclusions This is the first demonstration that moderation of splicing factor levels is associated with reversal of cellular senescence in human primary fibroblasts. Small molecule modulators of such targets may therefore represent promising novel anti-degenerative therapies. Electronic supplementary material The online version of this article (10.1186/s12860-017-0147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Vishal C Birar
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - Angela N Sheerin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - J Charles C Jeynes
- Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, Devon, EX2 5DW, UK
| | - Amy Hooper
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Helen R Dawe
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - David Melzer
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Richard G A Faragher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - Elizabeth L Ostler
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, UK.
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, UK.
| |
Collapse
|
16
|
Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 2016; 15:47. [PMID: 27142426 PMCID: PMC4855330 DOI: 10.1186/s12937-016-0167-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-) infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities. Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Markus Burkard
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.,Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Matthias M Pfeiffer
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany.,Pallas Clinic, Olten, Switzerland
| | - Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.
| |
Collapse
|