1
|
Chen P, Shen J. A Disulfidptosis-Related Gene Signature Associated with Prognosis and Immune Cell Infiltration in Osteosarcoma. Bioengineering (Basel) 2023; 10:1121. [PMID: 37892851 PMCID: PMC10603950 DOI: 10.3390/bioengineering10101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) stands as a leading aggressive bone malignancy that primarily affects children and adolescents worldwide. A recently identified form of programmed cell death, termed Disulfidptosis, may have implications for cancer progression. Yet, its role in OS remains elusive. To elucidate this, we undertook a thorough examination of Disulfidptosis-related genes (DRGs) within OS. This involved parsing expression data, clinical attributes, and survival metrics from the TARGET and GEO databases. Our analysis unveiled a pronounced association between the expression of specific DRGs, particularly MYH9 and LRPPRC, and OS outcome. Subsequent to this, we crafted a risk model and a nomogram, both honed for precise prognostication of OS prognosis. Intriguingly, risks associated with DRGs strongly resonated with immune cell infiltration levels, myriad immune checkpoints, genes tethered to immunotherapy, and sensitivities to systematic treatments. To conclude, our study posits that DRGs, especially MYH9 and LRPPRC, hold potential as pivotal architects of the tumor immune milieu in OS. Moreover, they may offer predictive insights into treatment responses and serve as reliable prognostic markers for those diagnosed with OS.
Collapse
Affiliation(s)
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Jia J, Li J, Zheng Q, Li D. A research update on the antitumor effects of active components of Chinese medicine ChanSu. Front Oncol 2022; 12:1014637. [PMID: 36237327 PMCID: PMC9552564 DOI: 10.3389/fonc.2022.1014637] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical data show that the incidence and mortality rates of cancer are rising continuously, and cancer has become an ongoing public health challenge worldwide. Excitingly, the extensive clinical application of traditional Chinese medicine may suggest a new direction to combat cancer, and the therapeutic effects of active ingredients from Chinese herbal medicine on cancer are now being widely studied in the medical community. As a traditional anticancer Chinese medicine, ChanSu has been clinically applied since the 1980s and has achieved excellent antitumor efficacy. Meanwhile, the ChanSu active components (e.g., telocinobufagin, bufotalin, bufalin, cinobufotalin, and cinobufagin) exert great antitumor activity in many cancers, such as breast cancer, colorectal cancer, hepatocellular carcinoma and esophageal squamous cell carcinoma. Many pharmaceutical scientists have investigated the anticancer mechanisms of ChanSu or the ChanSu active components and obtained certain research progress. This article reviews the research progress and antitumor mechanisms of ChanSu active components and proposes that multiple active components of ChanSu may be potential anticancer drugs.
Collapse
|
3
|
Cao X, Meng X, Fu P, Wu L, Yang Z, Chen H. circATP2A2 promotes osteosarcoma progression by upregulating MYH9. Open Med (Wars) 2021; 16:1749-1761. [PMID: 34901459 PMCID: PMC8630393 DOI: 10.1515/med-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023] Open
Abstract
Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.
Collapse
Affiliation(s)
- Xin Cao
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Xianfeng Meng
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Peng Fu
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lin Wu
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Zhen Yang
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Huijin Chen
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| |
Collapse
|
4
|
Zhang H, Liu S, Tang L, Ge J, Lu X. Long non-coding RNA (LncRNA) MRPL23-AS1 promotes tumor progression and carcinogenesis in osteosarcoma by activating Wnt/β-catenin signaling via inhibiting microRNA miR-30b and upregulating myosin heavy chain 9 (MYH9). Bioengineered 2020; 12:162-171. [PMID: 33356805 PMCID: PMC8806232 DOI: 10.1080/21655979.2020.1863014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNA (LncRNA) contributes to the occurrence and development of osteosarcoma (OS), although the underlying mechanism is not clear. In the present study, we showed that lncRNA MRPL23-AS1 was remarkably increased in OS tissues and cell lines. Stable knockdown of MRPL23-AS1 evidently attenuated cell viability and invasive ability, meanwhile inhibited in vivo tumor growth and dissemination. In terms of mechanism, luciferase reporter, RNA pull-down and fluorescence in situ hybridization (FISH) assays showed that MRPL23-AS1 competitively interacted with miR-30b, increasing myosin heavy chain 9 (MYH9) expression, a trans- activator of β-catenin, resulting in the activation of Wnt/β-catenin pathway, thereby promoting OS tumorigenesis and metastasis. Importantly, high MRPL23-AS1 was positively correlated with MYH9, while conversely correlated with miR-30b, suggesting that the regulatory axis of MRPL23-AS1/miR-30b/MYH9 does exist in OS. Clinically, OS patients with high MRPL23-AS1 had larger tumor size, higher stage and easier metastasis than those with low MRPL23-AS1, moreover, MRPL23-AS1 was identified as an adverse prognostic factor for OS survival. In conclusion, our results show that MRPL23-AS1 is a key oncogenic lncRNA in OS, targeting of MRPL23-AS1 may be a promising treatment for OS patients.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University , Luzhou City, P.R. China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University , Luzhou City, P.R. China
| | - Lian Tang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University , Luzhou City, P.R. China
| | - Jianhua Ge
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University , Luzhou City, P.R. China
| | - Xiaobo Lu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University , Luzhou City, P.R. China
| |
Collapse
|
5
|
Madda R, Chen CM, Wang JY, Chen CF, Chao KY, Yang YM, Wu HY, Chen WM, Wu PK. Proteomic profiling and identification of significant markers from high-grade osteosarcoma after cryotherapy and irradiation. Sci Rep 2020; 10:2105. [PMID: 32034162 PMCID: PMC7005698 DOI: 10.1038/s41598-019-56024-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Biological reconstruction of allografts and recycled autografts have been widely implemented in high-grade osteogenic sarcoma. For treating tumor-bearing autografts, extracorporeal irradiation (ECIR) and liquid nitrogen (LN) freezing techniques are being used worldwide as a gold standard treatment procedure. Both the methods aim to eradicate the tumor cells from the local recurrence and restore the limb function. Therefore, it is essential and crucial to find, and compare the alterations at molecular and physiological levels of the treated and untreated OGS recycled autografts to obtain valuable clinical information for better clinical practice. Thus, we aimed to investigate the significantly expressed altered proteins from ECIR-and cryotherapy/freezing- treated OGS (n = 12) were compared to untreated OGS (n = 12) samples using LC-ESI-MS/MS analysis, and the selected proteins from this protein panel were verified using immunoblot analysis. From our comparative proteomic analysis identified a total of 131 differentially expressed proteins (DEPs) from OGS. Among these, 91 proteins were up-regulated (2.5 to 3.5-folds), and 40 proteins were down-regulated (0.2 to 0.5 folds) (p < 0.01 and 0.05). The functional enrichment analysis revealed that the identified DEPs have belonged to more than 10 different protein categories include cytoskeletal, extracellular matrix, immune, enzyme modulators, and cell signaling molecules. Among these, we have confirmed two potential candidates’ expressions levels such as Fibronectin and Protein S100 A4 using western blot analysis. Our proteomic study revealed that LN-freezing and ECIR treatments are effectively eradicating tumor cells, and reducing the higher expressions of DEPs at molecular levels which may help in restoring the limb functions of OGS autografts effectively. To the best of our knowledge, this is the first proteomic study that compared proteomic profiles among freezing, ECIR treated with untreated OGS in recycled autografts. Moreover, the verified proteins could be used as prognostic or diagnostic markers that reveal valuable scientific information which may open various therapeutic avenues in clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Rashmi Madda
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Research and Development, National Yang-Ming University, Taipei, Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jir-You Wang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuang-Yu Chao
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Min Yang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation center, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Kuei Wu
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Orthopedic Department, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
6
|
Li Y, Liu X, Lin X, Zhao M, Xiao Y, Liu C, Liang Z, Lin Z, Yi R, Tang Z, Liu J, Li X, Jiang Q, Li L, Xie Y, Liu Z, Fang W. Chemical compound cinobufotalin potently induces FOXO1-stimulated cisplatin sensitivity by antagonizing its binding partner MYH9. Signal Transduct Target Ther 2019; 4:48. [PMID: 31754475 PMCID: PMC6861228 DOI: 10.1038/s41392-019-0084-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, we present novel molecular mechanisms by which FOXO1 functions as a tumor suppressor to prevent the pathogenesis of nasopharyngeal carcinoma (NPC). First, we observed that FOXO1 not only controlled tumor stemness and metastasis, but also sensitized NPC cells to cisplatin (DDP) in vitro and in vivo. Mechanistic studies demonstrated that FOXO1-induced miR-200b expression through the GSK3β/β-catenin/TCF4 network-mediated stimulation of ZEB1, which reduced tumor stemness and the epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed FOXO1 interaction with MYH9 and suppression of MYH9 expression by modulating the PI3K/AKT/c-Myc/P53/miR-133a-3p pathway. Decreased MYH9 expression not only reduced its interactions with GSK3β, but also attenuated TRAF6 expression, which then decreased the ubiquitin-mediated degradation of GSK3β protein. Increased GSK3β expression stimulated the β-catenin/TCF4/ZEB1/miR-200b network, which increased the downstream tumor stemness and EMT signals. Subsequently, we observed that chemically synthesized cinobufotalin (CB) strongly increased FOXO1-induced DDP chemosensitivity by reducing MYH9 expression, and the reduction in MYH9 modulated GSK3β/β-catenin and its downstream tumor stemness and EMT signal in NPC. In clinical samples, the combination of low FOXO1 expression and high MYH9 expression indicated the worst overall survival rates. Our studies demonstrated that CB potently induced FOXO1-mediated DDP sensitivity by antagonizing its binding partner MYH9 to modulate tumor stemness in NPC.
Collapse
Affiliation(s)
- YongHao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Lin
- Cancer Institute, Southern Medical University, 510515 Guangzhou, China
| | - Menyang Zhao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yanyi Xiao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zixi Liang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zelong Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Renhui Yi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zibo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xin Li
- Cancer Institute, Southern Medical University, 510515 Guangzhou, China
| | - Qingping Jiang
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, 510150 Guangzhou, China
| | - Libo Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yinyin Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 511436 Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| |
Collapse
|
7
|
Abstract
MYH9 was first discovered due to thrombocytopenia caused by MYH9 mutation-related abnormalities. In recent years, researchers have increasingly found that MYH9 plays an important role in cancer as a cytokine involved in cytoskeletal reorganization, cellular pseudopodia formation, and migration. MYH9 is closely related to the progress and poor prognosis of most solid tumors, and it is now accepted that MYH9 is a suppressor gene and plays an important role on the re-Rho pathway. Recent research has been limited to the study of tissues. However, it would be more direct and informative to be able to use hematology to assess tumor prognosis and changes in MYH9 levels and NMMHC-IIA. This article summarizes recent research on MYH9 and provides a reference for future clinical research.
Collapse
Affiliation(s)
- Yunmei Wang
- Shaanxi Provincial Cancer Hospital Affiliated to Medical School, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Shuguang Liu
- Hong Hui Hospital, The Affiliated Hospital, School of Medicine, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Yanjun Zhang
- Shaanxi Provincial Cancer Hospital Affiliated to Medical School, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jin Yang
- First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
8
|
Chu D, Li J, Lin H, Zhang X, Pan H, Liu L, Yu T, Yan M, Yao M. Quantitative proteomic analysis of the miR-148a-associated mechanisms of metastasis in non-small cell lung cancer. Oncol Lett 2018; 15:9941-9952. [PMID: 29928367 PMCID: PMC6004687 DOI: 10.3892/ol.2018.8581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression and protein synthesis. Our previous study demonstrated that miR-148a suppressed the metastasis of non-small cell lung cancer (NSCLC) in vitro and in vivo. However, the modulatory mechanism of this effect remains unclear. In the present study, quantitative proteomic technology was used to study the protein expression profile of SPC-A-1 cells subsequent to the downregulation of miR-148a expression, in order to elucidate the molecular mechanism of the suppression of NSCLC metastasis by miR-148a. The differentially expressed proteins identified were analyzed using bioinformatics tools, including the Database for Annotation, Visualization and Integrated Discovery and the Search Tool for the Retrieval of Interacting Genes/proteins. In two experiments, 4,048 and 4,083 proteins were identified, and 4,014 and 4,039 proteins were quantified, respectively. In total, 44 proteins were upregulated and 40 proteins were downregulated. This was verified at the protein and mRNA levels by western blotting and reverse transcription-quantitative polymerase chain reaction, respectively. Bioinformatics analysis was used to identify potential interactions and signaling networks for the differentially expressed proteins. This may have provided an appropriate perspective for the comprehensive analysis of the modulatory mechanism underlying the metastasis-suppressive effects of miR-148a in NSCLC. In conclusion, quantitative proteomic technology revealed that miR-148a may regulate a panel of tumor-associated proteins to suppress metastasis in NSCLC.
Collapse
Affiliation(s)
- Dandan Chu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Xiao Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Hongyu Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Lei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Mingxia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|