1
|
Huang H, Sun Y, Ju S, Wei H, Rong B, Ma Z, Yang Y, Liu W, Lin L, Ji H, Wu Y, Qiu D, Yan J, Ma X. De novo transcriptomes of floral bracts for 22 Bougainvillea accessions. Sci Data 2025; 12:645. [PMID: 40240768 PMCID: PMC12003693 DOI: 10.1038/s41597-025-04968-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Bougainvillea glabra is an ornamental tree or shrub with nearly 200 years of application in gardening and landscapes globally. Recently, the growing research interest in the applications of B. glabra extracts, such as medicinal applications, and synthetic materials for nutraceuticals, has led to the development of new techniques to be utilized for studying B. glabra. Moreover, the formations of polymorphic coloration and the mechanism of metamorphic bracts in B. glabra cultivars are worthy of study. However, the multi-omics information for B. glabra cultivars is lacking which hinders the progress of gene-level research and genetic applications. We sequenced the bracts transcriptomes of 22 B. glabra accessions and generated more than 80 Gb clean data. After de novo assembly and optimization, 174,758 unigenes (E90N50 = 2,473 bp) and annotation data were obtained. In addition, a total of 100,115 CDSs were detected. On average, each variety has 69,990 unigenes containing SNPs, among which 35,682 were annotated per variety. These transcriptome data are valuable for gene mining and expression experiments or other scientific areas.
Collapse
Affiliation(s)
- Huaxing Huang
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Yangna Sun
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Ju
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haoteng Wei
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boyu Rong
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhanyang Ma
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuemin Yang
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiming Liu
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongli Ji
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yangfeng Wu
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jianyong Yan
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China.
| | - Xiaokai Ma
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Plant Immunity Center, Haixia Institute of Science and Technology, and College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Rafeeq M, Al-Abbasi FA, Afzal M, Moglad E, Al-Qahtani SD, Alzrea SI, Almalki NAR, Imam F, Sayyed N, Kazmi I. 6-Shogaol Abrogates Parkinson's Disease in Rotenone-Induced Rodents: Based on In Silico Study and Inhibiting TNF-α/NF-κB/IL-1β/MAO-B. Pharmaceuticals (Basel) 2024; 17:1348. [PMID: 39458989 PMCID: PMC11510247 DOI: 10.3390/ph17101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: 6-Shogaol is a comparatively innovative anti-Parkinson's remedy with antioxidant and anti-inflammatory characteristics. This investigation intended to determine the role of 6-shogaol in the Parkinson's disease (PD) paradigm in rotenone-induced rats. Methods: Thirty male Wistar rats (10-12 weeks old; 180 ± 20 g) were divided into five groups. Animals with rotenone-induced experimental PD were subsequently treated with 6-shogaol-10 at 20 mg/kg for 28 days. After the experimental duration, behavioural investigations were performed, i.e., open field test, forced swim test, rotarod test, and catalepsy test. Biochemical assessments like AChE, GSH, CAT, SOD, MDA, nitrite, ceruloplasmin, proinflammatory markers such as IL-1β, NF-κB, TNF-α, and catecholamines markers (DA, GABA, and MAO-B) were determined. The docking procedure was conducted using the AutoDock Vina docking protocol. Furthermore, histopathology was performed. Results: Rotenone significantly increased the level of MAO-B, oxidative, nitrative, and pro-inflammatory markers. However, there was a decline in ceruloplasmin, dopamine, and endogenous antioxidants. Treatment with 6-shogaol (10 and 20 mg/kg) considerably sustained the elevation of oxidative stress and inflammatory indicators and decreased AChE activity and dopamine levels. In the histology of the brain, 6-shogaol improved the neuronal structure and reduced the degeneration of neurons. Based on the binding energy values, compound 6-shogaol demonstrates a favourable binding affinity to AChE, MAO-B, DA, and GABA with respective binding energies of -8.214, -8.133, -7.396 and -6.189 kcal/mol. Conclusions: In this study, 6-shogaol exhibited neuroprotective properties against PD, which could be employed as a prospective medication for PD.
Collapse
Affiliation(s)
- Misbahuddin Rafeeq
- Department of Pharmacology Faculty of Medicine, Rabigh King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Salwa D. Al-Qahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Sami I. Alzrea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia;
| | - Naif A. R. Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Caurio AC, Boldori JR, Gonçalves LM, Rodrigues CC, Rodrigues NR, Somacal S, Emanuelli T, Roehrs R, Denardin CC, Denardin ELG. Protective effect of Bougainvillea glabra Choisy bract in toxicity induced by Paraquat in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109873. [PMID: 38423200 DOI: 10.1016/j.cbpc.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 μg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.
Collapse
Affiliation(s)
- Aline Castro Caurio
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil; Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Jean Ramos Boldori
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Leonardo Martha Gonçalves
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Camille Cadore Rodrigues
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Nathane Rosa Rodrigues
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil.
| |
Collapse
|
4
|
Martinez-Vega MV, Galván-Menéndez-Conde S, Freyre-Fonseca V. Possible Signaling Pathways in the Gut Microbiota-Brain Axis for the Development of Parkinson's Disease Caused by Chronic Consumption of Food Additives. ACS Chem Neurosci 2023. [PMID: 37171224 DOI: 10.1021/acschemneuro.3c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied. To this end, a systematic literature analysis is performed with the selected keywords and the food additive effects are studied to draw possible routes of action. This analysis leads to the proposition of a model that explains the pathways that relate the ingestion of food additives to the development of Parkinson's disease. This work motivates further research that ponders the safety of food additives by measuring their impacts over the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Melanie Verónica Martinez-Vega
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez 52786, Mexico
| | | | - Verónica Freyre-Fonseca
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México 52786, Mexico
| |
Collapse
|
5
|
Li Y, Si D, Sabier M, Liu J, Si J, Zhang X. Guideline for screening antioxidant against lipid‐peroxidation by spectrophotometer. EFOOD 2023. [DOI: 10.1002/efd2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
6
|
Mamashli F, Meratan AA, Ghasemi A, Obeidi N, Salmani B, Atarod D, Pirhaghi M, Moosavi-Movahedi F, Mohammad-Zaheri M, Shahsavani MB, Habibi-Kelishomi Z, Goliaei B, Gholami M, Saboury AA. Neuroprotective Effect of Propolis Polyphenol-Based Nanosheets in Cellular and Animal Models of Rotenone-Induced Parkinson's Disease. ACS Chem Neurosci 2023; 14:851-863. [PMID: 36750431 DOI: 10.1021/acschemneuro.2c00605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Considering the central role of oxidative stress in the onset and progress of Parkinson's diseases (PD), search for compounds with antioxidant properties has attracted a growing body of attention. Here, we compare the neuroprotective effect of bulk and nano forms of the polyphenolic fraction of propolis (PFP) against rotenone-induced cellular and animal models of PD. Mass spectrometric analysis of PFP confirmed the presence of multiple polyphenols including kaempferol, naringenin, coumaric acid, vanillic acid, and ferulic acid. In vitro cellular experiments indicate the improved efficiency of the nano form, compared to the bulk form, of PFP in attenuating rotenone-induced cytotoxicity characterized by a decrease in cell viability, release of lactate dehydrogenase, increased ROS generation, depolarization of the mitochondrial membrane, decreased antioxidant enzyme activity, and apoptosis induction. In vivo experiments revealed that while no significant neuroprotection was observed relating to the bulk form, PFP nanosheets were very effective in protecting animals, as evidenced by the improved behavioral and neurochemical parameters, including decreased lipid peroxidation, increased GSH content, and antioxidant enzyme activity enhancement. We suggest that improved neuroprotective effects of PFP nanosheets may be attributed to their increased water solubility and enrichment with oxygen-containing functional groups (such as OH and COOH), leading to increased antioxidant activity of these compounds.
Collapse
Affiliation(s)
- Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Nahal Obeidi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj 3149968111, Iran
| | - Bahram Salmani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | | | - Mahya Mohammad-Zaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz 7196484334, Iran
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
7
|
Alharthy KM, Althurwi HN, Albaqami FF, Altharawi A, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Barbigerone Potentially Alleviates Rotenone-Activated Parkinson's Disease in a Rodent Model by Reducing Oxidative Stress and Neuroinflammatory Cytokines. ACS OMEGA 2023; 8:4608-4615. [PMID: 36777578 PMCID: PMC9910078 DOI: 10.1021/acsomega.2c05837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common age-related and slowly progressive neurodegenerative disease that affects approximately 1% of the elderly population. In recent years, phytocomponents have aroused considerable interest in the research for PD treatment as they provide a plethora of active compounds including antioxidant and anti-inflammatory compounds. Herein, we aimed to investigate the anti-Parkinson's effect of barbigerone, a natural pyranoisoflavone possessing antioxidant activity in a rotenone-induced rat model of PD. METHODS To evaluate antioxidant activity, a 0.5 mg/kg dose of rotenone was injected subcutaneously into rats. Barbigerone (10 and 20 mg/kg) was administered to rats for 28 days 1 h prior to rotenone. All behavioral parameters were assessed before sacrificing the rats. On the 29th day, all of the rats were humanely killed and assessed for biochemical changes in antioxidant enzymes (superoxide dismutase, glutathione, malondialdehyde, and catalase), neurotransmitter levels (dopamine, 5-hydroxyindoleacetic acid, serotonin, dihydroxyphenylacetic acid, and homovanillic acid levels), and neuroinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α, nuclear factor kappa B, and IL-6]. RESULTS The data presented in this study has shown that barbigerone attenuated rotenone-induced motor deficits including the rotarod test, catalepsy, akinesia, and open-field test. Additionally, barbigerone has shown improvements in the biochemical and neuroinflammatory parameters in the rotenone-induced rat model of PD. CONCLUSION The results demonstrated that barbigerone exhibits antioxidant and anti-inflammatory actions via reducing oxidative stress and inflammatory cytokines. Altogether, these findings suggest that barbigerone could potentially be utilized as a therapeutic agent against PD.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department
of Pharmacology, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Huang H, Ji H, Ju S, Lin W, Li J, Lv X, Lin L, Guo L, Qiu D, Yan J, Ma X. Pantranscriptome combined with phenotypic quantification reveals germplasm kinship and regulation network of bract color variation in Bougainvillea. FRONTIERS IN PLANT SCIENCE 2022; 13:1018846. [PMID: 36466294 PMCID: PMC9713818 DOI: 10.3389/fpls.2022.1018846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Bracts are the metamorphic non-flower organ in angiosperm plants. The variation of the color and shape of bracts was found to be neo-functionalized (i.e., similar to petals), garnering research interest as a pollinator attractor. Bougainvillea is known for its specialized, large, and colorful bracts, which contrast with its tiny colorless flowers. As a plant whose bracts vary greatly in terms of coloration, the molecular mechanisms for Bougainvillea bract coloration and polychroism are largely unknown. The lack of genomic information for Bougainvillea largely hinders studies into the evolution and genetic basis of bract color variation. In this study, a pan-transcriptome of bracts obtained from 18 Bougainvillea glabra accessions was employed to investigate the global population-level germplasm kinship and the gene regulation network for bract color variation. Our results showed that the bracts of B. glabra accessions have largely differentiated International Commission on Illumination (CIE) L-a-b values. Moreover, germplasm kinship detected using principal component analysis, phylogeny, and admixture analysis showed three optimal subgroups, two of them distinctly clustered, which were not directly correlated with bract color variation at the population level. Differentially expressed genes (DEGs) between accessions of high vs. low L-a-b values revealed several considerable upregulated genes related to bract color L-a-b variation. A weighted gene co-expression network was constructed, and eight co-expressed regulation modules were identified that were highly correlated with variation in bract CIE L-a-b color values. Several candidate DEGs and co-expressed hub genes (e.g., GERD, SGR, ABCA3, GST, CYP76AD1, CYP76C, and JAZ) that were tightly associated with bract color variation were eventually determined responsible for L-a-b colorations, which might be the core regulation factors contributing to the B. glabra bract color variation. This study provides valuable insights into the research on germplasm kinship, population-level pan-transcriptome expression profiles, and the molecular basis of color variation of key innovative bracts in horticultural Bougainvillea.
Collapse
Affiliation(s)
- Huaxing Huang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Hongli Ji
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Song Ju
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijin Guo
- International Magnesium Institute, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianyong Yan
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Altharawi A, Alharthy KM, Althurwi HN, Albaqami FF, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Europinidin Inhibits Rotenone-Activated Parkinson's Disease in Rodents by Decreasing Lipid Peroxidation and Inflammatory Cytokines Pathways. Molecules 2022; 27:molecules27217159. [PMID: 36363986 PMCID: PMC9658735 DOI: 10.3390/molecules27217159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson’s disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| |
Collapse
|
10
|
Yuan F, Lan X. Sequencing the organelle genomes of Bougainvillea spectabilis and Mirabilis jalapa (Nyctaginaceae). BMC Genom Data 2022; 23:28. [PMID: 35418016 PMCID: PMC9008926 DOI: 10.1186/s12863-022-01042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Mirabilis jalapa L. and Bougainvillea spectabilis are two Mirabilis species known for their ornamental and pharmaceutical values. The organelle genomes are highly conserved with a rapid evolution rate making them suitable for evolutionary studies. Therefore, mitochondrial and chloroplast genomes of B. spectabilis and M. jalapa were sequenced to understand their evolutionary relationship with other angiosperms. Data description Here, we report the complete mitochondrial genomes of B. spectabilis and M. jalapa (343,746 bp and 267,334 bp, respectively) and chloroplast genomes of B. spectabilis (154,520 bp) and M. jalapa (154,532 bp) obtained from Illumina NovaSeq. The mitochondrial genomes of B. spectabilis and M. jalapa consisted of 70 and 72 genes, respectively. Likewise, the chloroplast genomes of B. spectabilis and M. jalapa contained 131 and 132 genes, respectively. The generated genomic data will be useful for molecular characterization and evolutionary studies.
Collapse
Affiliation(s)
- Fang Yuan
- Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, TAAHC-SWU Medicinal Plant Joint R&D Center, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, China
| | - Xiaozhong Lan
- Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, TAAHC-SWU Medicinal Plant Joint R&D Center, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, China.
| |
Collapse
|
11
|
Zhang W, Zhou Q, Lin J, Ma X, Dong F, Yan H, Zhong W, Lu Y, Yao Y, Shen X, Huang L, Zhang W, Ming R. Transcriptome analyses shed light on floral organ morphogenesis and bract color formation in Bougainvillea. BMC PLANT BIOLOGY 2022; 22:97. [PMID: 35246031 PMCID: PMC8895829 DOI: 10.1186/s12870-022-03478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bougainvillea is a popular ornamental plant with brilliant color and long flowering periods. It is widely distributed in the tropics and subtropics. The primary ornamental part of the plant is its colorful and unusual bracts, rich in the stable pigment betalain. The developmental mechanism of the bracts is not clear, and the pathway of betalain biosynthesis is well characterized in Bougainvillea. RESULTS At the whole-genome level, we found 23,469 protein-coding genes by assembling the RNA-Seq and Iso-Seq data of floral and leaf tissues. Genome evolution analysis revealed that Bougainvillea is related to spinach; the two diverged approximately 52.7 million years ago (MYA). Transcriptome analysis of floral organs revealed that flower development of Bougainvillea was regulated by the ABCE flower development genes; A-class, B-class, and E-class genes exhibited high expression levels in bracts. Eight key genes of the betalain biosynthetic pathway were identified by homologous alignment, all of which were upregulated concurrently with bract development and betalain accumulation during the bract initiation stage of development. We found 47 genes specifically expressed in stamens, including seven highly expressed genes belonging to the pentose and glucuronate interconversion pathways. BgSEP2b, BgSWEET11, and BgRD22 are hub genes and interacted with many transcription factors and genes in the carpel co-expression network. CONCLUSIONS We assembled protein-coding genes of Bougainvilea, identified the floral development genes, and constructed the gene co-expression network of petal, stamens, and carpel. Our results provide fundamental information about the mechanism of flower development and pigment accumulation in Bougainvillea, and will facilitate breeding of cultivars with high ornamental value.
Collapse
Affiliation(s)
- Wenping Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Qun Zhou
- Xiamen Botanical Garden, 361000, Xiamen, Fujian, China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Xinyi Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Fei Dong
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Hansong Yan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Weimin Zhong
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Yijing Lu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Crop Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Yuan Yao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Xueting Shen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Lixian Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Wanqi Zhang
- Xiamen Botanical Garden, 361000, Xiamen, Fujian, China.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA.
| |
Collapse
|
12
|
Bashkatova V. Metabotropic glutamate receptors and nitric oxide in dopaminergic neurotoxicity. World J Psychiatry 2021; 11:830-840. [PMID: 34733645 PMCID: PMC8546773 DOI: 10.5498/wjp.v11.i10.830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons. Parkinson's disease (PD) is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra. Therefore, the study of the mechanisms, as well as the search for new targets for the prevention and treatment of neurodegenerative diseases, is an important focus of modern neuroscience. PD is primarily caused by dysfunction of dopaminergic neurons; however, other neurotransmitter systems are also involved. Research reports have indicated that the glutamatergic system is involved in different pathological conditions, including dopaminergic neurotoxicity. Over the last two decades, the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors (mGluRs) in the development of extrapyramidal disorders. However, the specific mechanisms driving these processes are presently unclear. The participation of the universal neuronal messenger nitric oxide (NO) in the mechanisms of dopaminergic neurotoxicity has attracted increased attention. The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity. More precisely, we focused on studies conducted on the rotenone-induced PD model. This review is also an outline of our own results obtained using the method of electron paramagnetic resonance, which allows quantitation of NO radicals in brain structures.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Laboratory of Physiology Reinforcements, Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| |
Collapse
|
13
|
Kurpik M, Zalewski P, Kujawska M, Ewertowska M, Ignatowicz E, Cielecka-Piontek J, Jodynis-Liebert J. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats? Nutrients 2021; 13:1050. [PMID: 33805023 PMCID: PMC8063919 DOI: 10.3390/nu13041050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Collapse
Affiliation(s)
- Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| |
Collapse
|
14
|
Abdel-Salam OM, Youssef Morsy SM, Youness ER, Yassen NN, Sleem AA. The effect of low dose amphetamine in rotenone-induced toxicity in a mice model of Parkinson's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1207-1217. [PMID: 32963743 PMCID: PMC7491496 DOI: 10.22038/ijbms.2020.45175.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The effects of low dose amphetamine on oxidative stress and rotenone-induced neurotoxicity and liver injury were examined in vivo in a mice model of Parkinson's disease. MATERIALS AND METHODS Male mice were treated with rotenone (1.5 mg/kg, every other day for two weeks, subcutaneously). Mice received either the vehicle or amphetamine intraperitoneally at doses of 0.5, 1.0, or 2.0 mg/kg. Oxidative stress was assessed by measurement of the lipid peroxidation product malondialdehyde (MDA), nitric oxide (NO), total anti-oxidant capacity (TAC), and paraoxonase-1 (PON-1) activity in the brain and liver. In addition, brain concentrations of nuclear factor kappa B (NF-κB) and tyrosine hydroxylase were determined and histopathology and Bax/Bcl-2 immunohistochemistry were performed. RESULTS The levels of lipid peroxidation and NO were increased and TAC and PON-1 were decreased significantly compared with vehicle-injected control mice. There were also significantly increased NF-κB and decreased tyrosine hydroxylase in the brain following rotenone administration. These changes were significantly attenuated by amphetamine. Rotenone caused neurodegenerative changes in the substantia nigra, cerebral cortex, and hippocampus. The liver showed degenerative changes in hepatocytes and infiltration of Kupffer cells. Bax/Bcl2 ratio was significantly increased in brain and liver tissues. Amphetamine prevented these histopathological changes and the increase in apoptosis evoked by rotenone. CONCLUSION These results suggest that low dose amphetamine exerts anti-oxidant and anti-apoptotic effects, protects against rotenone-induced neurodegeneration, and could prevent neuronal cell degeneration in Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Eman R. Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Noha N. Yassen
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Amany A Sleem
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| |
Collapse
|
15
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
16
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michael Jourdes
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | | | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| |
Collapse
|
17
|
Bougainvillea Genus: A Review on Phytochemistry, Pharmacology, and Toxicology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9070927. [PMID: 30034502 PMCID: PMC6035817 DOI: 10.1155/2018/9070927] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
This review discusses the current knowledge of the phytochemistry and in vitro and in vivo evaluations carried out using the extracts and, where appropriate, the main active components isolated from the genus Bougainvillea. Out of 18 species, most phytochemical, pharmacological, and toxicological studies focused on four species with different cultivars and one hybrid. Some plants are used for the treatment of various health disorders. Numerous phytochemical investigations of plants in this genus confirm the presence of aliphatic hydrocarbons, fatty acids, fatty alcohols, volatile compounds, phenolic compounds, peltogynoids, flavonoids, phytosterols, terpenes, carbohydrates, and betalains. Various studies have confirmed that these extracts or active substances that were isolated from the genus Bougainvillea have multiple pharmacological activities. Some species of Bougainvillea have emerged as sources of traditional medicine in human health. More studies of the phytochemical, pharmacological, and toxicological properties and their mechanisms of action, safety, and efficacy in all Bougainvillea species, cultivars, and hybrids are advisable for future research.
Collapse
|