1
|
Sharma V, Aseri GK, Bhagwat PK, Jain N, Ranveer RC. Purification and characterization of a novel bacteriocin produced by
Acinetobacter movanagherensis
AS isolated from goat rectum. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Vishakha Sharma
- Amity Institute of Microbial Technology Amity University Rajasthan Jaipur Rajasthan India
| | - Gajender Kumar Aseri
- Amity Institute of Microbial Technology Amity University Rajasthan Jaipur Rajasthan India
| | - Prashant K. Bhagwat
- Microbiology Department DBF Dayanand College of Arts and Science Solapur Maharashtra India
| | - Neelam Jain
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur Rajasthan India
| | - Rahul C. Ranveer
- Department of Post Harvest Management of Meat, Poultry and Fish PG Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha Raigad Maharashtra India
| |
Collapse
|
2
|
Evivie SE, Ogwu MC, Abdelazez A, Bian X, Liu F, Li B, Huo G. Suppressive effects of Streptococcus thermophilus KLDS 3.1003 on some foodborne pathogens revealed through in vitro, in vivo and genomic insights. Food Funct 2021; 11:6573-6587. [PMID: 32647845 DOI: 10.1039/d0fo01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Foodborne diseases (FBDs) remain a persistent global challenge and recent research efforts suggest that lactic acid bacteria (LAB) strains can contribute towards their prevention and treatment. This study investigates the genetic properties of Streptococcus thermophilus KLDS 3.1003 as a potential probiotic and health-promoting LAB strain as well as its in vitro and in vivo activities against two foodborne pathogens. In vitro, its antimicrobial activities and tolerance levels in simulated bile salts and acids were determined. The cytotoxic effects of the LAB strain in RAW264.7 cells were also evaluated. For in vivo evaluation, 24 BALB/c mice were orally administered control and trial diets for 14 days. Genomic analyses of this strain's bacteriocin configuration, stress response system and multidrug resistance genes were annotated to validate in vitro and in vivo results. In vitro antimicrobial results show that the cells and CFS of S. thermophilus KLDS 3.1003 could inhibit both pathogens with the former being more effective (P < 0.05). In addition, its cell-free supernatant (CFS) could inhibit the growth of both pathogens, with catalase treatment having the highest effect against it. More so, after 3 h of incubation, survivability levels of S. thermophilus KLDS 3.1003 were significantly high (P < 0.05). LPS-induced RAW264.7 cell activities were also significantly reduced by 108-109 CFU mL-1 of S. thermophilus KLDS. In vivo, significant weight losses were inhibited in the TSTEC group compared to the TSTSA group (P < 0.05). Moreover, pathogen-disrupted blood biochemical parameters like HDL, LDL, TP, TG, AST, ALT and some minerals were restored in the respective prevention groups (TSTEC and TSTSA). Genomic analyses showed that S. thermophilus KLDS 3.1003 has bacteriocin-coding peptides, which accounts for its antimicrobial abilities in vitro and in vivo. S. thermophilus KLDS 3.1003 is also endowed with intact genes for acid tolerance, salt-resistance, cold and heat shock responses and antioxidant activities, which are required to promote activities against the selected foodborne pathogens. This study showed that S. thermophilus KLDS 3.1003 has the genomic capacity to inhibit foodborne pathogens' growth in vitro and in vivo, thus qualifying it as a potential probiotic, antimicrobial and bio-therapeutic candidate.
Collapse
Affiliation(s)
- Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China. and Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria. and Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria.
| | - Matthew Chidozie Ogwu
- School of Biosciences and Veterinary Medicine, University of Camerino 60232, Camerino Marche - Floristic Research Centre of the Apennine Gran Sasso and Monti della Laga National Park, San Colombo, 67021 Barisciano, L'Aquila, Italy. and Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Benin, Benin City 300001, Nigeria.
| | - Amro Abdelazez
- Department of Dairy Microbiology, Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza 12618, Egypt. and Institute of Microbe and Host Health, Linyi University, Linyi 276005, China.
| | - Xin Bian
- Department of Food Engineering, Harbin Commerce University, Harbin 150028, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB. Influence of Culture Conditions and Medium Compositions on the Production of Bacteriocin-Like Inhibitory Substances by Lactococcus lactis Gh1. Microorganisms 2020; 8:E1454. [PMID: 32977375 PMCID: PMC7597962 DOI: 10.3390/microorganisms8101454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
Collapse
Affiliation(s)
- Roslina Jawan
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.J.); (M.H.)
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Sahar Abbasiliasi
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (S.M.)
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (S.M.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Murni Halim
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.J.); (M.H.)
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Arbakariya B. Ariff
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.J.); (M.H.)
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
4
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
5
|
Sartono G, Rizqiyah I, Asmarinah, Heng NCK, Malik A. Three Bacteriocin Peptides from a Lactic Acid Bacterium Weissella confusa MBF8-1 with Spermicidal Activity. Curr Pharm Biotechnol 2019; 20:766-771. [PMID: 31244418 DOI: 10.2174/1389201020666190617163310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The development of antibiotic resistance amongst bacterial pathogens and a population explosion, e.g. in countries such as Indonesia, are two issues the world is facing today. These issues have stimulated interest in the development of new antimicrobial therapeutic agents and contraceptive strategies, such as novel spermicides. Bacteriocins, which are bacterially-derived antimicrobial peptides, may fulfill some of the criteria for these new agents. METHODS Weissella confusa MBF8-1, originally isolated from a homemade soy product, exhibits antibacterial activity that was subsequently found to be plasmid-encoded, presumably by three peptides Bac1, Bac2 and Bac3. In the present study, we tested cell-free MBF8-1 bacteriocin preparations and chemically-synthesized versions of Bac1, Bac2 and Bac3 peptides for (i) its antibacterial activity against the indicator bacterium Leuconostoc mesenteroides and (ii) its ability to affect the motility of spermatozoa. Nisin, a known lantibiotic bacteriocin, was used as the control. RESULTS Here, we demonstrate that synthetic Bac1, in combination with synthetic Bac2, was sufficient to inhibit the growth of L. mesenteroides and affect sperm motility. However, the presence of all three synthetic peptides, s-Bac1, s-Bac2 and s-Bac3, was required for full potency. CONCLUSION In summary, the bacteriocin-like peptides of W. confusa MBF8-1 have the potential to be developed as a narrow-spectrum antimicrobial agent and a novel spermicidal agent.
Collapse
Affiliation(s)
- Gusti Sartono
- Pharmaceutical Microbiology and Biotechnology Division, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok 16424, Indonesia
| | - Izzatu Rizqiyah
- Pharmaceutical Microbiology and Biotechnology Division, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok 16424, Indonesia
| | - Asmarinah
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, UI Salemba Campus, Jalan Salemba Raya no. 6, Jakarta 10430, Indonesia
| | - Nicholas C K Heng
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Amarila Malik
- Pharmaceutical Microbiology and Biotechnology Division, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok 16424, Indonesia
| |
Collapse
|
6
|
Khaldi TEM, Kebouchi M, Soligot C, Gomri MA, Kharroub K, Le Roux Y, Roux E. Streptococcus macedonicus strains isolated from traditional fermented milks: resistance to gastrointestinal environment and adhesion ability. Appl Microbiol Biotechnol 2019; 103:2759-2771. [PMID: 30701281 DOI: 10.1007/s00253-019-09651-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
In this study, Streptococcus macedonicus (S. macedonicus) strains were identified from Algerian traditional fermented milks (Lben and Rayeb). Important prerequisites of probiotic interest such as acidity, bile salts tolerance, and adhesion ability to epithelial cells were investigated. A combination of phenotypic (ability to grow on Bile Esculin Azide medium, BEA; on high salt content medium NaCl 6.5%; on alkaline medium pH 9.6) and genotypic approaches (16S rRNA, ITS genes sequencing and MLST technique) allowed to identify four genetically distinct strains of S. macedonicus. These four strains and two references, Streptococcus thermophilus LMD-9 and Lactobacillus rhamnosus GG (LGG), were tested for their capacity to survive at low pH values, and at different concentrations of an equimolar bile salts mixture (BSM). Two different cell lines, Caco-2 TC7 and HT29-MTX, were used for the adhesion study. The results show that S. macedonicus strains selected constitute a distinct genetic entity from the Greek strain S. macedonicus ACA-DC-198. They were able to survive up to pH 3 and could tolerate high concentrations of bile salts (10 mM), unlike LMD-9 and LGG strains. Our strains also display in vitro adhesion similar to the LGG strain on Caco-2 TC7 and higher adhesion than the LMD-9 strain to Caco-2 TC7 and HT29-MTX cell models. This first characterization allows considering S. macedonicus as a potential candidate for possible probiotic effects that need to be investigated.
Collapse
Affiliation(s)
- Tedj El Moulouk Khaldi
- Laboratoire Alimentation, Nutrition et Santé (ALNUTS), Institut de la Nutrition, de l'Alimentation et des Technologies Agro Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, 25000, Constantine, Algeria
| | | | - Claire Soligot
- INRA, URAFPA, Université de Lorraine, F-54000, Nancy, France
| | - Mohamed Amine Gomri
- Laboratoire Biotechnologie et Qualité des Aliments (BIOQUAL), Equipe Métabolites des Extrêmophiles METEX, Institut de la Nutrition, de l'Alimentation et des Technologies Agro Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, 25000, Constantine, Algeria
| | - Karima Kharroub
- Laboratoire Biotechnologie et Qualité des Aliments (BIOQUAL), Equipe Métabolites des Extrêmophiles METEX, Institut de la Nutrition, de l'Alimentation et des Technologies Agro Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, 25000, Constantine, Algeria
| | - Yves Le Roux
- INRA, URAFPA, Université de Lorraine, F-54000, Nancy, France
| | - Emeline Roux
- CALBINOTOX, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
7
|
Stability of Bacteriocin-Like Inhibitory Substance (BLIS) Produced by Pediococcus acidilactici kp10 at Different Extreme Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5973484. [PMID: 30363649 PMCID: PMC6180926 DOI: 10.1155/2018/5973484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
Collapse
|