1
|
Dens Higano J, Burns K, Smith G, Solinsky R. Correlating autonomic physiology with symptoms of autonomic dysreflexia after spinal cord injury. PM R 2025; 17:478-484. [PMID: 39817508 PMCID: PMC12065649 DOI: 10.1002/pmrj.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Individuals with spinal cord injury (SCI) commonly have autonomic dysreflexia (AD) with increased sympathetic activity. After SCI, individuals have decreased baroreflex sensitivity and increased vascular responsiveness. OBJECTIVE To evaluate the relationship between baroreflex and blood vessel sensitivity with AD symptoms. DESIGN Case control. SETTING Tertiary academic center. PATIENTS 14 individuals with SCI, 17 matched uninjured controls. INTERVENTIONS All participants quantified AD symptoms using the Autonomic Dysfunction Following SCI (ADFSCI)-AD survey. Participants received three intravenous phenylephrine boluses, reproducibly increasing systolic blood pressure (SBP) 15-40 mmHg. Continuous heart rate (R-R interval, ECG), beat-to-beat blood pressures (Finapres), and popliteal artery flow velocity were recorded. Vascular responsiveness (α1 adrenoreceptor sensitivity) and heart rate responsiveness to increased SBP (baroreflex sensitivity) were calculated. MAIN OUTCOME MEASURES Baroreflex sensitivity after increased SBP; Vascular responsiveness through quantified mean arterial pressure (MAP) 2-minute area under the curve and change in vascular resistance. RESULTS SCI and control cohorts were well matched with mean age 31.9 and 29.6 years (p = .41); 21.4% and 17.6% female, respectively. Baseline MAP (p = .83) and R-R interval (p = .39) were similar. ADFSCI-AD scores were higher following SCI (27.9 ± 22.9 vs. 4.2 ± 2.9 in controls, p = .002). To quantify SBP response, MAP area under the curve was normalized to dose/body weight. Individuals with SCI had significantly larger responses (0.26 ± 0.19 mmHg*s/kg*μg) than controls (0.06 ± 0.06 mmHg*s/kg*μg, p = .002). Similarly, leg vascular resistance increased after SCI (24% vs. 6% to a normalized dose, p = .007). Baroreflex sensitivity was significantly lower after SCI (15.0 ± 8.3 vs. 23.7 ± 9.3 ms/mmHg, p = .01). ADFSCI-AD subscore had no meaningful correlation with vascular responsiveness (R2 = 0.008) or baroreflex sensitivity (R2 = 0.092) after SCI. CONCLUSIONS Although this confirms smaller previous studies suggesting increased α1 adrenoreceptor sensitivity and lower baroreflex sensitivity in individuals with SCI, contrary to our hypothesis these differences lacked correlation to increased symptoms of AD. Further research into physiologic mechanisms is needed to explain why some individuals with SCI develop symptoms.
Collapse
Affiliation(s)
- Jennifer Dens Higano
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathryn Burns
- Cardiovascular Research Lab, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Geoffrey Smith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan Solinsky
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Research Lab, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Martínez-Torija M, Esteban PF, Santos-De-La-Mata A, Castillo-Hermoso M, Molina-Holgado E, Moreno-Luna R. Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury. J Clin Med 2025; 14:1556. [PMID: 40095463 PMCID: PMC11899819 DOI: 10.3390/jcm14051556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Spinal cord injury (SCI) is a complex medical condition with widespread effects that extend beyond motor and sensory impairments. In addition to nervous system damage, SCI patients experience various secondary complications, including vascular dysfunction, altered body composition, and metabolic disturbances. Among the most common secondary pathologies is the development of pressure injuries (PIs), chronic wounds that significantly affect quality of life and can be challenging to treat. Understanding the physiological and cellular mechanisms behind these complications is crucial for improving care and therapeutic outcomes. Methods: We conducted a comprehensive literature search in PubMed, Scopus, and Google Scholar using keywords related to spinal cord injury, pressure ulcer/pressure injuries, metabolic and vascular dysfunction, biomechanics, and regenerative therapies. Studies were selected based on their relevance to the pathophysiology, risk factors, and novel therapeutic approaches for PIs in SCI patients. Results: Vascular dysfunction, characterized by impaired blood flow and microcirculatory issues, predisposes SCI patients to ischemia and tissue necrosis, particularly in areas subjected to prolonged pressure. Additionally, changes in body composition, such as increased adiposity and muscle atrophy, further compromise tissue integrity and healing capacity. The inflammatory response, mediated by cytokines such as IL-1, IL-6, and TNF-α, exacerbates these effects by sustaining a pro-inflammatory environment that delays the transition of macrophages to the M2 phenotype, critical for wound healing. External factors, such as poor nutrition, infections, and immobility, also play a significant role in worsening the wound healing process. Conclusions: Chronic SCI induces a cascade of physiological changes that predispose patients to the development of PIs and complicate their recovery. The intricate interplay of vascular, metabolic, and inflammatory responses creates a hostile environment for wound healing. A deeper understanding of these systemic effects is essential not only for developing targeted therapeutic strategies to improve chronic wound healing but also for refining preventive approaches that minimize their occurrence. Advancing this knowledge will ultimately help enhance the quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Mario Martínez-Torija
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (M.M.-T.); (A.S.-D.-L.-M.); (M.C.-H.)
- Pathophysiology and Regenerative Medicine, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
- Department of Nursing, Hospital Universitario de Toledo, SESCAM, 45071 Toledo, Spain
| | - Pedro F. Esteban
- Grupo de Neuroinflamación, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (P.F.E.); (E.M.-H.)
| | - Angela Santos-De-La-Mata
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (M.M.-T.); (A.S.-D.-L.-M.); (M.C.-H.)
- Pathophysiology and Regenerative Medicine, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| | - Matilde Castillo-Hermoso
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (M.M.-T.); (A.S.-D.-L.-M.); (M.C.-H.)
- Pathophysiology and Regenerative Medicine, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
- Unit of Internal Medicine and Intermediate Respiratory Care, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Eduardo Molina-Holgado
- Grupo de Neuroinflamación, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (P.F.E.); (E.M.-H.)
- Grupo de Neuroinflamación, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| | - Rafael Moreno-Luna
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (M.M.-T.); (A.S.-D.-L.-M.); (M.C.-H.)
- Pathophysiology and Regenerative Medicine, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| |
Collapse
|
3
|
Higano JD, Burns K, Smith G, Solinsky R. Why do different people with Spinal Cord Injury have differing severity of symptoms with Autonomic Dysreflexia? Exploring relationships of vascular alpha-1 adrenoreceptor and baroreflex sensitivity after SCI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306772. [PMID: 38746296 PMCID: PMC11092739 DOI: 10.1101/2024.05.02.24306772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Introduction Individuals with spinal cord injury (SCI) commonly have autonomic dysreflexia (AD) with increased sympathetic activity. After SCI, individuals have decreased baroreflex sensitivity and increased vascular responsiveness. Objective To evalate relationship between baroreflex and blood vessel sensitivity with autonomic dysreflexia symptoms. Design Case control. Setting Tertiary academic center. Patients 14 individuals with SCI, 17 matched uninjured controls. Interventions All participants quantified AD symptoms using the Autonomic Dysfunction Following SCI (ADFSCI)-AD survey. Participants received three intravenous phenylephrine boluses, reproducibly increasing systolic blood pressure (SBP) 15-40 mmHg. Continuous heart rate (R-R interval, ECG), beat-to-beat blood pressures (finapres), and popliteal artery flow velocity were recorded. Vascular responsiveness (α1 adrenoreceptor sensitivity) and heart rate responsiveness to increased SBP (baroreflex sensitivity) were calculated. Main outcome measures Baroreflex sensitivity after increased SBP; Vascular responsiveness through quantified mean arterial pressure (MAP) 2-minute area under the curve and change in vascular resistance. Results SCI and control cohorts were well-matched with mean age 31.9 and 29.6 years (p=0.41), 21.4% and 17.6% female respectively. Baseline MAP (p=0.83) and R-R interval (p=0.39) were similar. ADFSCI-AD scores were higher following SCI (27.9+/-22.9 vs 4.2+/-2.9 in controls, p=0.002).To quantify SBP response, MAP area under the curve was normalized to dose/bodyweight. Individuals with SCI had significantly larger responses (0.26+/-0.19 mmHg*s/kg*ug) than controls (0.06+/-0.06 mmHg*s/kg*ug, p=0.002). Similarly, leg vascular resistance increased after SCI (24% vs 6% to a normalized dose, p=0.007). Baroreflex sensitivity was significantly lower after SCI (15.0+/-8.3 vs 23.7+/-9.3 ms/mmHg, p=0.01). ADFSCI-AD subscore had no meaningful correlation with vascular responsiveness (R2=0.008) or baroreflex sensitivity (R2=0.092) after SCI. Conclusions While this confirms smaller previous studies suggesting increased α1 adrenoreceptor sensitivity and lower baroreflex sensitivity in individuals with SCI, these differences lacked correlation to increased symptoms of AD. Further research into physiologic mechanisms to explain why some individuals with SCI develop symptoms is needed.
Collapse
|
4
|
Benitez-Albiter A, Anderson CP, Jones M, Park SS, Layec G, Park SY. Contributing Factors to Endothelial Dysfunction in Individuals with Spinal Cord Injuries. Pulse (Basel) 2024; 12:49-57. [PMID: 39022560 PMCID: PMC11250044 DOI: 10.1159/000539199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Patients with spinal cord injuries (SCIs) are at a greater risk for the development of cardiovascular diseases (CVDs) than able-bodied individuals due to the high risk of endothelial dysfunction. Summary For instance, patients with SCIs lose autonomic control of the heart and vasculature, which results in severe fluctuations in blood pressure. These oscillations between hypotension and hypertension have been shown to damage blood vessel endothelial cells and may contribute to the development of atherosclerosis. Furthermore, the loss of skeletal muscle control results in skeletal muscle atrophy and inward remodeling of the conduit arteries. It has been shown that blood vessels in the legs are chronically exposed to high shear, while the aorta experiences chronically low shear. These alterations to shear forces may adversely impact endothelial vasodilatory capacity and promote inflammatory signaling and leukocyte adherence. Additionally, microvascular endothelial vasodilatory capacity is impaired in patients with an SCI, and this may precede changes in conduit artery endothelial function. Finally, due to immobility and a loss of skeletal muscle mass, patients with SCIs have a higher risk of metabolic disorders, inflammation, and oxidative stress. Key Messages Collectively, these factors may impair endothelium-dependent vasodilatory capacity, promote leukocyte adhesion and infiltration, promote the peroxidation of lipids, and ultimately support the development of atherosclerosis. Therefore, future interventions to prevent CVDs in patients with SCIs should focus on the management of endothelial health to prevent endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
| | - Cody P. Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Matthew Jones
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Sang-Seo Park
- Department of Physiology, Kyung Hee University, Seoul, Republic of Korea
| | - Gwenael Layec
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Pedrinolla A, Cavedon V, Milanese C, Barbi C, Giuriato G, Laginestra FG, Martignon C, Schena F, Venturelli M. The role of muscle mass in vascular remodeling: insights from a single-leg amputee model. Eur J Appl Physiol 2023; 123:523-531. [PMID: 36367571 PMCID: PMC9941227 DOI: 10.1007/s00421-022-05076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Both muscle mass and physical activity are independent mechanisms that play a role in vascular remodeling, however, the direct impact of muscle mass on the structure and function of the vessels is not clear. The aim of the study was to determine the impact of muscle mass alteration on lower limbs arterial diameter, blood flow, shear rate and arterial stiffness. METHODS Nine (33 ± 13 yrs) male individuals with a single-leg amputation were recruited. Vascular size (femoral artery diameter), hemodynamics (femoral artery blood flow and shear rate were measured at the level of the common femoral artery in both amputated (AL) and whole limbs (WL). Muscle mass of both limbs, including thigh for AL and thigh and leg for WL, was measured with a DXA system. RESULTS AL muscle mass was reduced compared to the WL (3.2 ± 1.2 kg vs. 9.4 ± 2.1 kg; p = 0.001). Diameter of the femoral artery was reduced in the AL (0.5 ± 0.1 cm) in comparison to the WL (0.9 ± 0.2 cm, p = 0.001). However, femoral artery blood flow normalized for the muscle mass (AL = 81.5 ± 78.7ml min-1 kg-1,WL = 32.4 ± 18.3; p = 0.11), and blood shear rate (AL = 709.9 ± 371.4 s-1, WL = 526,9 ± 295,6; p = 0.374) were non different between limbs. A correlation was found only between muscle mass and femoral artery diameter (p = 0.003, R = 0.6561). CONCLUSION The results of this study revealed that the massive muscle mass reduction caused by a leg amputation, but independent from the level of physical activity, is coupled by a dramatic arterial diameter decrease. Interestingly, hemodynamics and arterial stiffness do not seem to be impacted by these structural changes.
Collapse
Affiliation(s)
- Anna Pedrinolla
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy.
| | - Valentina Cavedon
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Chiara Milanese
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Chiara Barbi
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Gaia Giuriato
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Fabio Giuseppe Laginestra
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Camilla Martignon
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Federico Schena
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
| | - Massimo Venturelli
- Section of Movement Science, Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Via Felice Casorati 43, 37137, Verona, Italy
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Nakata T, Shibasaki M, Nishimura Y, Kinoshita T, Hashizaki T, Kamijo YI, Kouda K, Umemoto Y, Tajima F. Quantification of catecholamine neurotransmitters released from cutaneous vasoconstrictor nerve endings in men with cervical spinal cord injury. Am J Physiol Regul Integr Comp Physiol 2023; 324:R345-R352. [PMID: 36693170 DOI: 10.1152/ajpregu.00063.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Control of cutaneous circulation is critically important to maintain thermoregulation, especially in individuals with cervical spinal cord injury (CSCI) who have no or less central thermoregulatory drive. However, the peripheral vasoconstrictor mechanism and capability have not been fully investigated after CSCI. Post- and presynaptic sensitivities of the cutaneous vasoconstrictor system were investigated in 8 CSCI and 7 sedentary able-bodied (AB) men using an intradermal microdialysis technique. Eight doses of norepinephrine (NE, 10-8 to 10-1 M) and five doses of tyramine (TY, 10-8, 10-5 to 10-2 M) were administered into the anterior right and left thigh, respectively. Endogenous catecholamines, noradrenaline, and dopamine, collected at the TY site, were determined by high-performance liquid chromatography with electrochemical detection. Regardless of vasoconstrictor agents, cutaneous vascular conductance decreased dose-dependently and responsiveness was similar between the groups (NE: Group P = 0.255, Dose P = 0.014; TY: Group P = 0.468, Dose P < 0.001), whereas the highest dose of each drug induced cutaneous vasodilation. Administration of TY promoted the release of noradrenaline and dopamine in both groups. Notably, the amount of noradrenaline released was similar between the groups (P = 0.819), although the concentration of dopamine was significantly greater in individuals with CSCI than in AB individuals (P = 0.004). These results suggest that both vasoconstrictor responsiveness and neural functions are maintained after CSCI, and dopamine in the skin is likely to induce cutaneous vasodilation.
Collapse
Affiliation(s)
- Tomonori Nakata
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Wakayama, Japan
| | - Tokio Kinoshita
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.,Division of Rehabilitation, Wakayama Medical University Hospital, Wakayama, Japan
| | - Takamasa Hashizaki
- Division of Rehabilitation, Wakayama Medical University Hospital, Wakayama, Japan
| | - Yoshi-Ichiro Kamijo
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ken Kouda
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Horn AG, Behnke BJ, Poole DC. Comment on "Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health". J Appl Physiol (1985) 2022; 133:320-321. [PMID: 35926223 DOI: 10.1152/japplphysiol.00300.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
8
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Trbovich M, Wu Y, Koek W, Zhao J, Kellogg D. Impact of tetraplegia vs. paraplegia on venoarteriolar, myogenic and maximal cutaneous vasodilation responses of the microvasculature: Implications for cardiovascular disease. J Spinal Cord Med 2022; 45:49-57. [PMID: 32496962 PMCID: PMC8890560 DOI: 10.1080/10790268.2020.1761173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Objective: Cardiovascular disease (CVD) is a leading cause of mortality in persons with SCI. While macrovascular remodeling and function after SCI is well documented, changes in the microvascular structure and function are comparably understudied, but importantly predict CVD risk. Specifically, the integrity of venoarteriolar (VAR), myogenic (MYO) and maximal vasodilation responses are largely unknown after SCI, especially in persons with tetraplegia (TP) at highest risk of CVD. This is the first to examine the differences in VAR (cuff inflation), MYO (limb dependency) and maximal vasodilation responses of the microvasculature between able bodied (AB) versus those with TP and paraplegia (PP).Design: Observational.Setting: Laboratory.Participants: Eight AB, 6 TP, and 8 PP persons.Interventions: One forearm and calf were treated topically with lidocaine 2.5%/prilocaine 2.5% while contralateral limb served as a control. Laser doppler flowmeters were applied over treated and control sites during limb dependency, cuff inflation and local skin heating (Tloc) up to 42°C.Outcome measures: Skin vascular resistance (SkVR) change with cuff inflation and limb dependency and maximal cutaneous vascular conductance (CVC) during local heating.Results: Change in SkVR was not significantly different between groups or extremity (upper vs. lower) during cuff inflation or limb dependency. However, CVC at Tloc 42°C was significantly different in the lower extremity (LE) of TP and PP (P = 0.007, 0.35) compared to AB.Conclusion: Increases in SkVR during cuff inflation (VAR) and limb dependency (VAR and MYO) are unaltered after SCI, however maximal vasodilation in the LE post-SCI is higher than AB persons.
Collapse
Affiliation(s)
- Michelle Trbovich
- Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Correspondence to: Michelle Trbovich, Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio78229, TX, USA.
| | - Yubo Wu
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wouter Koek
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joan Zhao
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dean Kellogg
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Wahl U, Hirsch T. A systematic review of cardiovascular risk factors in patients with traumatic spinal cord injury. VASA 2021; 51:46-55. [PMID: 34852665 DOI: 10.1024/0301-1526/a000981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: The main risk factors for cardiac events, and particularly for the development of atherosclerosis, are diabetes mellitus, arterial hypertension, dyslipidemia and smoking. Patients with a traumatic spinal cord injury (SCI) may present with autonomic nervous system dysfunction depending on their level of spinal cord injury. Studies have found a rise in cardiovascular mortality. A systematic review was conducted that focused on this patient group's predisposition to vascular risk. Methods: We performed a PubMed and Cochrane database search. After applying specific search criteria, 42 articles were included in our analysis out of a total of 10,784 matches. The articles were selected with the aim of establishing cardiovascular risk factors in patients with traumatic spinal cord injury. Results: Patients with SCI are at an increased risk for peripheral artery disease even in the absence of cardiovascular risk factors. Major vascular changes to the arteries of patients with SCI include: a reduction in lumen size, increased vessel wall tension, higher vascular stiffness, an impaired reactive hyperemic response, and a lack of reduced vascular resistance. The findings for carotid atherosclerosis were inconclusive. This group of patients also has a higher disposition for diabetes mellitus, lipid metabolism disorders and coronary artery disease. Paraplegics are more likely to suffer from dyslipidemia, obesity and PAD, while tetraplegics are more likely to have diabetes mellitus. Conclusions: Patients with SCI are more likely to have cardiovascular risk factors and have cardiovascular disease compared to the normal population. Peripheral circulatory disorders are particularly common. Patients with SCI are now considered to be a new risk group for cardiovascular disease; however, large epidemiological studies are needed to verify in more detail the cardiovascular risk profile of this patient group.
Collapse
Affiliation(s)
- Uwe Wahl
- Department of Internal Medicine, BG Hospital Bergmannstrost Halle, Halle/Saale, Germany
| | - Tobias Hirsch
- Practice for Internal Medicine and Vascular Diseases, Vein Competence Centre, Halle/Saale, Germany
| |
Collapse
|
11
|
Harman KA, DeVeau KM, Squair JW, West CR, Krassioukov AV, Magnuson DSK. Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiol Rep 2021; 9:e14969. [PMID: 34337884 PMCID: PMC8327165 DOI: 10.14814/phy2.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Hemodynamic instability and cardiovascular (CV) dysfunction are hallmarks of patients living with cervical and high thoracic spinal cord injuries (SCI). Individuals experience bouts of autonomic dysreflexia (AD) and persistent hypotension which hamper the activities of daily living. Despite the widespread use of exercise training to improve health and CV function after SCI, little is known about how different training modalities impact hemodynamic stability and severity of AD in a model of incomplete SCI. In this study, we used implantable telemetry devices to assess animals with T2 contusions following 3.5 weeks of exercise training initiated 8 days post-injury: passive hindlimb cycling (T2-CYC, n = 5) or active forelimb swimming (T2-SW, n = 6). Uninjured and non-exercised SCI control groups were also included (CON, n = 6; T2-CON, n = 7; T10-CON, n = 6). Five weeks post-injury, both T2-CON and T2-CYC presented with resting hypotension compared to uninjured CON and T10-CON groups; no differences were noted in resting blood pressure in T2-SW versus CON and T10-CON. Furthermore, pressor responses to colorectal distention (AD) were larger in all T2-injured groups compared to T10-CON, and were not attenuated by either form of exercise training. Interestingly, when T2-injured animals were re-stratified based on terminal BBB scores (regardless of training group), animals with limited hindlimb recovery (T2-LOW, n = 7) had more severe AD responses. Our results suggest that the spontaneous recovery of locomotor and autonomic function after severe but incomplete T2 SCI also influences the severity of AD, and that short periods (3.5 weeks) of passive hindlimb cycling or active forelimb swimming are ineffective in this model.
Collapse
Affiliation(s)
- Kathryn A. Harman
- Department of Health & Sport SciencesUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kathryn M. DeVeau
- Department of Anatomy and Cell BiologyGeorge Washington UniversityWashingtonD.C.USA
| | - Jordan W. Squair
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Christopher R. West
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Andrei V. Krassioukov
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
- GF Strong Rehabilitation CentreVancouver Health AuthorityVancouverCanada
| | - David S. K. Magnuson
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
12
|
Jansen E, de Groot S, Smit CA, Thijssen DHJ, Te Hopman M, Janssen TWJ. Vascular adaptations in nonstimulated areas during hybrid cycling or handcycling in people with a spinal cord injury: a pilot study of 10 cases. Spinal Cord Ser Cases 2021; 7:54. [PMID: 34193818 PMCID: PMC8245507 DOI: 10.1038/s41394-021-00417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022] Open
Abstract
STUDY DESIGN Sub-study of a randomized controlled trial. OBJECTIVES To examine if hybrid cycling (cycling with the legs via electrical stimulation combined with voluntary handcycling) compared to handcycling leads to different systemic vascular adaptations in individuals with a long-term spinal cord injury (SCI). SETTING Two rehabilitation centers in the Netherlands. METHODS Ten individuals with a SCI trained on a hybrid bicycle (N = 5) or a handcycle (N = 5) for 16 weeks twice a week. Prior to and following the training the intima media thickness (IMT) of the common coronary artery (CCA) and superficial femoral artery (SFA) were measured and the flow-mediated dilation (FMD) of the brachial artery (BA) was analyzed. RESULTS Before training, there were no significant differences in any of the outcome measures between the groups. We found no change in CCA IMT (pre: 0.616 mm, post: 0.586 mm), or in SFA (pre: 0.512 mm, post: 0.520 mm) after hybrid cycling. We also found no change in FMD % of BA after hybrid cycling (pre: 9.040%, post: 9.220%). There were no changes in CCA IMT, SFA IMT, and FMD% after handcycling either. CONCLUSIONS It appears that 16 weeks of twice-weekly training of up to 30 min on a hybrid bicycle or handcycle does not lead to systemic vascular adaptations. A larger sample size and training protocol with more frequent and higher intensity training (which might involve a home-based setting and an adapted period prior to the training) might show different results.
Collapse
Affiliation(s)
- Evelien Jansen
- Amsterdam Rehabilitation Research Centre Reade, Amsterdam, The Netherlands.
- Centre Basalt Wassenaarseweg 501, Leiden, The Netherlands.
| | - Sonja de Groot
- Amsterdam Rehabilitation Research Center Reade, Amsterdam, The Netherlands
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Dick H J Thijssen
- Department of Physiology, Radboud University, Nijmegen, The Netherlands
- Cardiovascular Physiology and Exercise at Liverpool John Moores University, Liverpool, UK
| | | | | |
Collapse
|
13
|
Williams AM, Ma JK, Martin Ginis KA, West CR. Effects of a Tailored Physical Activity Intervention on Cardiovascular Structure and Function in Individuals With Spinal Cord Injury. Neurorehabil Neural Repair 2021; 35:692-703. [PMID: 34027716 PMCID: PMC8704204 DOI: 10.1177/15459683211017504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Spinal cord injury (SCI) leads to a loss of descending motor and sympathetic control below the level of injury (LOI), which ultimately results in chronically altered cardiovascular function and remodeling. While supervised, laboratory-based exercise training can generate cardiovascular adaptations in people with SCI, it is unknown whether behavioral community-based interventions effectively generate such adaptations for individuals with SCI. Objective Examine the effects of a tailored behavioral physical activity (PA) intervention on cardiac and vascular structure and function in individuals with SCI. Methods In this randomized controlled trial, 32 participants with SCI (18-65 years, SCI >1 year) were assigned to PA (8-week behavioral intervention) or control (CON) groups. At baseline and postintervention, measures of resting left ventricular (LV) structure and function, carotid intima-media thickness and pulse-wave velocity were assessed with ultrasound and tonometry. Results Twenty-eight participants completed the study (n = 14/group). Across the full study cohort there were no significant changes in indices of LV or vascular structure and function, despite notable improvements in peak power and oxygen uptake in the PA group. However, in a subanalysis for LOI, individuals in the PA group with LOIs below T6 had evidence of altered LV geometry (ie, increased LV internal diameter, reduced sphericity index and relative wall thickness; group × time P < 0.05 for all), which was not seen in individuals with higher LOIs at or above T6. Conclusion An 8-week behavioral PA intervention appears to promote adaptations in cardiac geometry more readily in individuals with lower level SCI than those with higher-level SCI.
Collapse
Affiliation(s)
| | - Jasmin K Ma
- University of British Columbia, Vancouver, British Columbia, Canada.,Arthritis Research Canada, Richmond, British Columbia, Canada
| | - Kathleen A Martin Ginis
- University of British Columbia, Vancouver, British Columbia, Canada.,University of British Columbia, Kelowna, British Columbia, Canada
| | | |
Collapse
|
14
|
Effects of Respiratory Muscle Training on Baroreflex Sensitivity, Respiratory Function, and Serum Oxidative Stress in Acute Cervical Spinal Cord Injury. J Pers Med 2021; 11:jpm11050377. [PMID: 34062971 PMCID: PMC8147917 DOI: 10.3390/jpm11050377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: respiratory complications are a leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). We examined the effects of respiratory muscle training (RMT) in patients with acute cervical SCI. Methods: this prospective trial enrolled 44 adults with acute cervical SCI, of which twenty received RMT and twenty-four did not receive RMT. Respiratory function, cardiovascular autonomic function, and reactive oxidative species (ROS) were compared. The experimental group received 40-min high-intensity home-based RMT 7 days per week for 10 weeks. The control group received a sham intervention for a similar period. The primary outcomes were the effects of RMT on pulmonary and cardiovascular autonomic function, and ROS production in individuals with acute cervical SCI. Results: significant differences between the two groups in cardiovascular autonomic function and the heart rate response to deep breathing (p = 0.017) were found at the 6-month follow-up. After RMT, the maximal inspiratory pressure (p = 0.042) and thiobarbituric acid-reactive substances (TBARS) (p = 0.006) improved significantly, while there was no significant difference in the maximal expiratory pressure. Significant differences between the two groups in tidal volume (p = 0.005) and the rapid shallow breathing index (p = 0.031) were found at 6 months. Notably, the SF-36 (both the physical (PCS) and mental (MCS) component summaries) in the RMT group had decreased significantly at the 6-month follow-up, whereas the clinical scores did not differ significantly (p = 0.333) after RMT therapy. Conclusions: High-intensity home-based RMT can improve pulmonary function and endurance and reduce breathing difficulties in patients with respiratory muscle weakness after injury. It is recommended for rehabilitation after spinal cord injury.
Collapse
|
15
|
Venturelli M, Amann M, Trinity JD, Ives SJ, Richardson RS. Spinal cord injury and vascular function: evidence from diameter-matched vessels. J Appl Physiol (1985) 2021; 130:562-570. [PMID: 33270514 DOI: 10.1152/japplphysiol.00329.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of a spinal cord injury (SCI) on vascular function has been clouded by both the physiological and mathematical bias of assessing vasodilation in arteries with differing diameters both above and below the lesion and when comparing with healthy, nondisabled controls (CTRL). Thus, we measured vascular function, with flow-mediated vasodilation (FMD), in 10 SCI and 10 CTRL with all arteries matched for diameter (≈0.5 cm): brachial artery (BA, arm, functional limb in both groups) and popliteal artery (PA, leg, disused limb in SCI, functional limb in CTRL). PA %FMD was significantly attenuated in SCI (5.6 ± 0.6%) compared with CTRL (8.4 ± 1.3%), with no difference in the BA (SCI: 8.6 ± 0.9%; CTRL: 8.7 ± 0.7%). However, unlike the arm, where muscle mass was preserved, the legs of the SCI were significantly smaller than CTRL (∼70%). Thus, reactive hyperemia (RH), which is heavily dependent on the volume of muscle occluded, in the PA was attenuated in the SCI (144 ± 22 mL) compared with CTRL (258 ± 16 mL) but not different in the BA. Consequently, shear rate was significantly diminished in the PA of the SCI, such that %FMD/shear rate (vascular responsiveness) was actually greater in the SCI (1.5 ± 0.1% · s-1) than CTRL (1.2 ± 0.1% · s-1). Of note, this was significantly greater than both their own BA (0.9 ± 0.1% · s-1) and that of the CTRL (0.9 ± 0.1% · s-1). Therefore, examining vessels of similar size, this study reveals normal vascular function above the lesion and vascular dysfunction below the lesion. However, below the lesion there was, actually, evidence of increased vascular responsiveness in this population.NEW & NOTEWORTHY This study examined the effect of a spinal cord injury (SCI) and subsequent limb disuse on vascular function, assessed by %FMD, in diameter-matched vessels above and below the lesion in subjects with SCI and controls. The results reveal normal vascular function above the lesion and vascular dysfunction below the lesion (%FMD). However, below the lesion there was, actually, evidence of increased vascular responsiveness (%FMD/shear rate) in this population.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences. University of Verona, Verona, Italy.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Markus Amann
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Stephen J Ives
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Hansen RK, Samani A, Laessoe U, Handberg A, Larsen RG. Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users: protocol for a randomised controlled trial. BMJ Open 2020; 10:e040727. [PMID: 33067301 PMCID: PMC7569950 DOI: 10.1136/bmjopen-2020-040727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cardiovascular and metabolic diseases are a growing concern for individuals with spinal cord injury (SCI). Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in individuals with SCI. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 min of moderate-to-vigorous intensity aerobic exercise, three times per week, for improvement in cardiometabolic health in individuals with SCI. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12 weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (eg, vascular structure and function) cardiometabolic risk factors in manual wheelchair users with SCI. METHODS AND ANALYSIS A randomised controlled trial will compare 12 weeks of upper-body rowing exercise, 30 min three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks of training (post) and 6 months after the termination of the intervention period (follow-up). Outcomes will include inflammatory (eg, C reactive protein) and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood pressure, cardiorespiratory fitness level, brachial artery vascular structure and function and autonomic nervous system function. ETHICS AND DISSEMINATION This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (J.nr. N-20190053). The principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication. TRIAL REGISTRATION NUMBER NCT04390087.
Collapse
Affiliation(s)
- Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Afshin Samani
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Uffe Laessoe
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
- Physical Therapy Department, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
Lujan HL, DiCarlo SE. Direct comparison of cervical and high thoracic spinal cord injury reveals distinct autonomic and cardiovascular consequences. J Appl Physiol (1985) 2020; 128:554-564. [PMID: 31999525 DOI: 10.1152/japplphysiol.00721.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A wide range of spinal cord levels (cervical 8-thoracic 6) project to the stellate ganglia (which provides >90% of sympathetic supply to the heart), with a peak at the thoracic 2 (T2) level. We hypothesize that despite the proximity of the lesions, high thoracic spinal cord injuries (i.e., T2-3 SCI) do not closely mimic the hemodynamic responses recorded with cervical SCI (i.e., C6-7 SCI). To test this hypothesis, rats were instrumented with an intra-arterial telemetry device (Data Sciences International PA-C40) for recording arterial pressure, heart rate, and locomotor activity as well as a catheter within the intraperitoneal space. After recovery, rats were subjected to complete C6-7 spinal cord transection (n = 8), sham transection (n = 4), or T2-3 spinal cord transection (n = 7). After the spinal cord transection or sham transection, arterial pressure, heart rate, and activity counts were recorded in conscious animals, in a thermoneutral environment, for 20 s every minute, 24 h/day for 12 consecutive weeks. After 12 wk, chronic reflex- and stress-induced cardiovascular and hormonal responses were compared in all groups. C6-7 rats had hypotension, bradycardia, and reduced physical activity. In contrast, T2-3 rats were tachycardic. C6-7 rats compared with T2-3 and spinal intact rats also had reduced cardiac sympathetic tonus, reduced reflex- and stress induced cardiovascular responses, and reduced sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Thus injuries above and below the peak level (T2) of spinal cord projections to the stellate ganglia have remarkably different outcomes.NEW & NOTEWORTHY Twelve consecutive weeks of resting hemodynamic data as well as chronic reflex- and stress-induced cardiovascular, autonomic, and hormonal responses were compared in spinal intact and C6-7 and T2-3 spinal cord-transected rats. C6-7 rats compared with T2-3 and spinal intact rats had reduced cardiac sympathetic tonus, reduced reflex- and stress-induced cardiovascular responses, and reduced sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Thus injuries above and below the peak level (T2) of spinal cord projections to the stellate ganglia have remarkably different outcomes.
Collapse
Affiliation(s)
- Heidi L Lujan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Gur DO. Exercise and Peripheral Arteriosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:181-193. [PMID: 32342458 DOI: 10.1007/978-981-15-1792-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Adaptation of a healthy lifestyle including adequate daily physical activity is shown to reduce 80% of cardiovascular mortality and 40% of cancer-related deaths. A large body of evidence exists proving that this relationship is dose dependent, and even half of the recommended normal physical activity yields significant risk reduction. There has been no medical therapy that would provide such high percentages of reduction in mortality to date. The World Health Organization, therefore, has started an initiative to implement exercise into daily life as a primary prevention measure. Herein, we will focus on the effects of exercise on the vasculature, mainly the peripheral vasculature, in the context of atherosclerotic disease. Exercise has a fundamental role in the pathogenesis, diagnosis, and treatment of atherosclerotic vascular disease. It exerts a protective effect against the development of atherosclerosis irrespective of other cardiovascular risk factors. Additionally, exercise induces changes in vascular hemodynamics helping us to elucidate the presence of obscure vascular involvement. Once again, exercise is the main treatment modality in peripheral arterial disease with accumulating evidence to reduce symptoms and improve both exercise capacity and cardiovascular symptoms.
Collapse
Affiliation(s)
- Demet Ozkaramanli Gur
- Faculty of Medicine, Department of Cardiology, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
19
|
Influence of cervical spinal cord injury on thermoregulatory and cardiovascular responses in the human body: Literature review. J Clin Neurosci 2019; 69:7-14. [DOI: 10.1016/j.jocn.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/04/2019] [Indexed: 11/20/2022]
|
20
|
Mneimneh F, Ghaddar N, Ghali K, Moussalem C, Omeis I. Would personal cooling vest be effective for use during exercise by people with thoracic spinal cord injury? J Therm Biol 2019; 82:123-141. [PMID: 31128640 DOI: 10.1016/j.jtherbio.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
People with thoracic spinal cord injury (SCI), named people with paraplegia (PA), are vulnerable to thermal heat stress during exercise due to disruption in their thermal physiology. Using personal cooling vests with phase change material (PCM) or ice presents a possible solution for PA to suppress the increase in core temperature and body heat storage. With the limited published experimental studies about effective cooling vest for PA, this work aims to develop an altered PA bioheat model combined with cooling vest model to study cooling vest performance during exercise. The integrated PA bioheat and vest models predict core and skin temperatures, latent and sensible heat losses and change in body heat storage for PA with and without a cooling vest. The models were validated with published experimental data on PA without the cooling vest and on PA with two cooling vests; one using PCM at melting temperature of 15 °C and the other using ice packets during exercise. It was observed that sensible heat losses at the four torso segments (abdomen, lower back, chest and upper back) increased with the vest case compared to the no-vest case; while, latent heat losses decreased compared to the no-vest case. However, insignificant change was seen in core temperatures and body heat storage as was also reported experimentally. The performance of each of the cooling vest during exercise on PA was dependent on skin coverage area and melting temperatures.
Collapse
Affiliation(s)
- Farah Mneimneh
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| | - Nesreen Ghaddar
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon.
| | - Kamel Ghali
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| | - Charbel Moussalem
- Division of Neurosurgery, Department of Surgery, American University of Beirut Medical Center, P.O. Box: 11-0236, Riad El Solh Beirut, 1107 2020, Beirut, Lebanon
| | - Ibrahim Omeis
- Division of Neurosurgery, Department of Surgery, American University of Beirut Medical Center, P.O. Box: 11-0236, Riad El Solh Beirut, 1107 2020, Beirut, Lebanon
| |
Collapse
|
21
|
Harman KA, States G, Wade A, Stepp C, Wainwright G, DeVeau K, King N, Shum-Siu A, Magnuson DSK. Temporal analysis of cardiovascular control and function following incomplete T3 and T10 spinal cord injury in rodents. Physiol Rep 2019; 6:e13634. [PMID: 29595874 PMCID: PMC5875543 DOI: 10.14814/phy2.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that results in whole‐body dysfunction, notably cardiovascular (CV) disruption and disease. Injury‐induced destruction of autonomic pathways in conjunction with a progressive decline in physical fitness contribute to the poor CV status of SCI individuals. Despite the wide use of exercise training as a therapeutic option to reduce CV dysfunction, little is known about the acute hemodynamic responses to the exercise itself. We investigated CV responses to an exercise challenge (swimming) following both high and low thoracic contusion to determine if the CV system is able to respond appropriately to the challenge of swimming. Blood pressure (BP) telemetry and echocardiography were used to track the progression of dysfunction in rodents with T3 and T10 SCI (n = 8 each) for 10 weeks postcontusion. At 1 week postinjury, all animals displayed a drastic decline in heart rate (HR) during the exercise challenge, likely a consequence of neurogenic shock. Furthermore, over time, all groups developed a progressive inability to maintain BP within a narrow range during the exercise challenge despite displaying normal hemodynamic parameters at rest. Echocardiography of T10 animals revealed no persistent signs of cardiac dysfunction; T3 animals exhibited a transient decline in systolic function that returned to preinjury levels by 10 weeks postinjury. Novel evidence provided here illustrates that incomplete injuries produce hemodynamic instability that only becomes apparent during an exercise challenge. Further, this dysfunction lasts into the chronic phase of disease progression despite significant recovery of hindlimb locomotion and cardiac function.
Collapse
Affiliation(s)
- Kathryn A Harman
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gregory States
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Abigail Wade
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Chad Stepp
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Grace Wainwright
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Kathryn DeVeau
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Nicholas King
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Alice Shum-Siu
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David S K Magnuson
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| |
Collapse
|
22
|
Krassioukov AV, Currie KD, Hubli M, Nightingale TE, Alrashidi AA, Ramer L, Eng JJ, Ginis KAM, MacDonald MJ, Hicks A, Ditor D, Oh P, Verrier MC, Craven BC. Effects of exercise interventions on cardiovascular health in individuals with chronic, motor complete spinal cord injury: protocol for a randomised controlled trial [Cardiovascular Health/Outcomes: Improvements Created by Exercise and education in SCI (CHOICES) Study]. BMJ Open 2019; 9:e023540. [PMID: 30612110 PMCID: PMC6326283 DOI: 10.1136/bmjopen-2018-023540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Recent studies demonstrate that cardiovascular diseases and associated complications are the leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). Abnormal arterial stiffness, defined by a carotid-to-femoral pulse wave velocity (cfPWV) ≥10 m/s, is a recognised risk factor for heart disease in individuals with SCI. There is a paucity of studies assessing the efficacy of conventional training modalities on arterial stiffness and other cardiovascular outcomes in this population. Therefore, this study aims to compare the efficacy of arm cycle ergometry training (ACET) and body weight-supported treadmill training (BWSTT) on reducing arterial stiffness in individuals with chronic motor complete, high-level (above the sixth thoracic segment) SCI. METHODS AND ANALYSIS This is a multicentre, randomised, controlled, clinical trial. Eligible participants will be randomly assigned (1:1) into either ACET or BWSTT groups. Sixty participants with chronic (>1 year) SCI will be recruited from three sites in Canada (Vancouver, Toronto and Hamilton). Participants in each group will exercise three times per week up to 30 min and 60 min for ACET and BWSTT, respectively, over the period of 6 months. The primary outcome measure will be change in arterial stiffness (cfPWV) from baseline. Secondary outcome measures will include comprehensive assessments of: (1) cardiovascular parameters, (2) autonomic function, (3) body composition, (4) blood haematological and metabolic profiles, (5) cardiorespiratory fitness and (6) quality of life (QOL) and physical activity outcomes. Outcome measures will be assessed at baseline, 3 months, 6 months and 12 months (only QOL and physical activity outcomes). Statistical analyses will apply linear-mixed modelling to determine the training (time), group (ACET vs BWSTT) and interaction (time × group) effects on all outcomes. ETHICS AND DISSEMINATION Ethical approval was obtained from all three participating sites. Primary and secondary outcome data will be submitted for publication in peer-reviewed journals and widely disseminated. TRIAL REGISTRATION NUMBER NCT01718977; Pre-results. TRIAL STATUS Recruitment for this study began on January 2013 and the first participant was randomized on April 2013. Recruitment stopped on October 2018.
Collapse
Affiliation(s)
- Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Katharine D Currie
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Michèle Hubli
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Balgrist University Hospital, University of Zurich, Zurich, Swaziland
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah A Alrashidi
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Physical Therapy Department, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Leanne Ramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Janice J Eng
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen A Martin Ginis
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Southern Medical Program, School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Audrey Hicks
- Spinal Cord Injury Centre, McMaster University, Hamilton, Ontario, Canada
| | - Dave Ditor
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Paul Oh
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Molly C Verrier
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Beverly Catharine Craven
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Coombs GB, Barak OF, Phillips AA, Mijacika T, Sarafis ZK, Lee AHX, Squair JW, Bammert TD, DeSouza NM, Gagnon D, Krassioukov AV, Dujic Z, DeSouza CA, Ainslie PN. Acute heat stress reduces biomarkers of endothelial activation but not macro- or microvascular dysfunction in cervical spinal cord injury. Am J Physiol Heart Circ Physiol 2018; 316:H722-H733. [PMID: 30575438 DOI: 10.1152/ajpheart.00693.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.
Collapse
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Hotchkiss Brain Institute, Libin Cardiovascular Institute, University of Calgary, Alberta, Canada
| | - Tanja Mijacika
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Zoe K Sarafis
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Amanda H X Lee
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute Research Centre, Département de pharmacologie et physiologie, Faculté de Médecine, Université de Montréal , Montreal, Quebec , Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada.,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan , Kelowna, British Columbia , Canada.,International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
24
|
An altered Bioheat model for persons with cervical spinal cord injury. J Therm Biol 2018; 77:96-110. [PMID: 30196905 DOI: 10.1016/j.jtherbio.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
Abstract
The objective of this work is to develop a Bioheat model to predict the thermal responses of people with tetraplegia (TP) under hot, cold and neutral ambient conditions as well as different physical activities suitable for their level of injury. The focus is on TP with impairment or loss of motor and/or sensory function in C1 to C7 segments of the spinal cord due to damage of neural elements within the spinal canal. Starting from transient multi-segmented Bioheat model of able-bodied (AB) people, specific modifications were performed reflecting the changes in physiology due to the injury affecting the blood circulation system, energy expenditure, and thermoregulatory functions in the body. The TP Bioheat model predicts the TP thermal responses under steady and transient thermal conditions, and different activity levels that are appropriate for the level of injury. The model was validated with published experimental data reporting physiological and thermal data measurements on cases of people with complete and incomplete tetraplegia under controlled environmental conditions and activity levels. In both transient and steady state environmental conditions, the predicted core and mean skin temperature values were compared against the experimental data with maximum error of 0.86 °C and 0.9 °C respectively. The TP Bioheat model can be used as a tool to propose appropriate personal cooling strategies for TP.
Collapse
|
25
|
Maher JL, McMillan DW, Nash MS. Exercise and Health-Related Risks of Physical Deconditioning After Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 23:175-187. [PMID: 29339894 DOI: 10.1310/sci2303-175] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sedentary lifestyle occurring soon after spinal cord injury (SCI) may be in contrast to a preinjury history of active physical engagement and is thereafter associated with profound physical deconditioning sustained throughout the lifespan. This physical deconditioning contributes in varying degrees to lifelong medical complications, including accelerated cardiovascular disease, insulin resistance, osteopenia, and visceral obesity. Unlike persons without disability for whom exercise is readily available and easily accomplished, exercise options for persons with SCI are more limited. Depending on the level of injury, the metabolic responses to acute exercise may also be less robust than those accompanying exercise in persons without disability, the training benefits more difficult to achieve, and the risks of ill-considered exercise both greater and potentially irreversible. For exercise to ultimately promote benefit and not impose additional impairment, an understanding of exercise opportunities and risks if exercise is undertaken by those with SCI is important. The following monograph will thus address common medical challenges experienced by persons with SCI and typical modes and benefits of voluntary exercise conditioning.
Collapse
Affiliation(s)
- Jennifer L Maher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida.,Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, Florida
| | - Mark S Nash
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida.,Departments of Neurological Surgery and Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Ennis S, McGregor G, Shave R, McDonnell B, Thompson A, Banerjee P, Jones H. Low frequency electrical muscle stimulation and endothelial function in advanced heart failure patients. ESC Heart Fail 2018; 5:727-731. [PMID: 29971969 PMCID: PMC6073028 DOI: 10.1002/ehf2.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022] Open
Abstract
Aim Obtain initial estimates of the change in brachial artery endothelial function and maximal oxygen uptake (VO2peak) with 8 weeks of low‐frequency electrical muscle stimulation (LF‐EMS) or sham in patients with advanced chronic heart failure. Methods and results Using a double blind, randomized design, 35 patients with chronic heart failure (New York Heart Association class III–IV) were assigned to 8 weeks (5 × 60 min per week) of either LF‐EMS (4 Hz, continuous) or sham (skin level stimulation only) of the quadriceps and hamstrings muscles. Four of the five sessions were at home and one under supervision. Ultrasound images of resting brachial artery diameter and post 5 min occlusion to determine flow‐mediated dilation (FMD), a marker of vascular function and peak oxygen uptake (VO2peak) during cardiopulmonary exercise test, were measured before and after LF‐EMS (n = 20) and sham (n = 15) interventions. FMD improved by 2.56% (95% confidence interval: 0.69 to 3.80) with LF‐EMS compared with sham (P = 0.07). There were no notable changes in VO2peak. Conclusions Improvements in FMD with LF‐EMS may have a clinically meaningful effect as higher FMD is associated with better prognosis. This is a preliminary finding, and a larger trial is warranted.
Collapse
Affiliation(s)
- Stuart Ennis
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.,Cardiff Metropolitan University, Cardiff, UK
| | - Gordon McGregor
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.,University of Coventry, Coventry, UK
| | | | | | | | - Prithwish Banerjee
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.,University of Warwick, Coventry, UK.,University of Coventry, Coventry, UK
| | - Helen Jones
- Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
27
|
DeVeau KM, Harman KA, Squair JW, Krassioukov AV, Magnuson DSK, West CR. A comparison of passive hindlimb cycling and active upper-limb exercise provides new insights into systolic dysfunction after spinal cord injury. Am J Physiol Heart Circ Physiol 2017; 313:H861-H870. [PMID: 28710067 PMCID: PMC9925118 DOI: 10.1152/ajpheart.00046.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
Abstract
Active upper-limb and passive lower-limb exercise are two interventions used in the spinal cord injury (SCI) population. Although the global cardiac responses have been previously studied, it is unclear how either exercise influences contractile cardiac function. Here, the cardiac contractile and volumetric responses to upper-limb (swim) and passive lower-limb exercise were investigated in rodents with a severe high-thoracic SCI. Animals were divided into control (CON), SCI no exercise (NO-EX), SCI passive hindlimb cycling (PHLC), or SCI swim (SWIM) groups. Severe contusion SCI was administered at the T2 level. PHLC and SWIM interventions began on day 8 postinjury and lasted 25 days. Echocardiography and dobutamine stress echocardiography were performed before and after injury. Cardiac contractile indexes were assessed in vivo at study termination via a left ventricular pressure-volume conductance catheter. Stroke volume was reduced after SCI (91 µl in the NO-EX group vs. 188 µl in the CON group, P < 0.05) and was reversed at study termination in the PHLC (167 µl) but not SWIM (90 µl) group. Rates of contraction were reduced in NO-EX versus CON groups (6,079 vs. 9,225 mmHg, respectively, P < 0.05) and were unchanged by PHLC and SWIM training. Similarly, end-systolic elastance was reduced in the NO-EX versus CON groups (0.67 vs. 1.37 mmHg/µl, respectively, P < 0.05) and was unchanged by PHLC or SWIM training. Dobutamine infusion normalized all pressure indexes in each SCI group (all P < 0.05). In conclusion, PHLC improves flow-derived cardiac indexes, whereas SWIM training displayed no cardiobeneficial effect. Pressure-derived deficits were corrected only with dobutamine, suggesting that reduced β-adrenergic stimulation is principally responsible for the impaired cardiac contractile function after SCI.NEW & NOTEWORTHY This is the first direct comparison between the cardiac changes elicited by active upper-limb or passive lower-limb exercise after spinal cord injury. Here, we demonstrate that lower-limb exercise positively influences flow-derived cardiac indexes, whereas upper-limb exercise does not. Furthermore, neither intervention corrects the cardiac contractile dysfunction associated with spinal cord injury.
Collapse
Affiliation(s)
- Kathryn M. DeVeau
- 1International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; ,2Kentucky Spinal Cord Injury Research Institute, University of Louisville, Louisville, Kentucky;
| | - Kathryn A. Harman
- 1International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; ,2Kentucky Spinal Cord Injury Research Institute, University of Louisville, Louisville, Kentucky;
| | - Jordan W. Squair
- 1International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; ,3MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Andrei V. Krassioukov
- 4Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; ,5GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada; and
| | - David S. K. Magnuson
- 2Kentucky Spinal Cord Injury Research Institute, University of Louisville, Louisville, Kentucky;
| | - Christopher R. West
- 1International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; ,6School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
La Fountaine MF, Cirnigliaro CM, Azarelo F, Hobson JC, Tascione O, Swonger KN, Dyson-Hudson T, Bauman WA. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury. Exp Physiol 2017; 102:1234-1244. [PMID: 28671307 DOI: 10.1113/ep086239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/29/2017] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml-1 ) or insulin sensitivity (IS; <13.13 mIU ml-1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR has a confounding effect on sublesional microvascular endothelium-mediated cutaneous perfusion responses to provocation. Preservation of endothelial sensitivity to its agonists appears to be an important modifiable risk factor to optimize cutaneous perfusion in the lower extremities of persons with SCI.
Collapse
Affiliation(s)
- Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
- The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Frank Azarelo
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joshua C Hobson
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Oriana Tascione
- State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Kirsten N Swonger
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, USA
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Legg Ditterline BE, Aslan SC, Randall DC, Harkema SJ, Castillo C, Ovechkin AV. Effects of Respiratory Training on Heart Rate Variability and Baroreflex Sensitivity in Individuals With Chronic Spinal Cord Injury. Arch Phys Med Rehabil 2017; 99:423-432. [PMID: 28802811 DOI: 10.1016/j.apmr.2017.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the effects of pressure threshold respiratory training (RT) on heart rate variability and baroreflex sensitivity in persons with chronic spinal cord injury (SCI). DESIGN Before-after intervention case-controlled clinical study. SETTING SCI research center and outpatient rehabilitation unit. PARTICIPANTS Participants (N=44) consisted of persons with chronic SCI ranging from C2 to T11 who participated in RT (n=24), and untrained control subjects with chronic SCI ranging from C2 to T9 (n=20). INTERVENTIONS A total of 21±2 RT sessions performed 5 days a week during a 4-week period using a combination of pressure threshold inspiratory and expiratory devices. MAIN OUTCOME MEASURES Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and beat-to-beat arterial blood pressure and heart rate changes during the 5-second-long maximum expiratory pressure maneuver (5s MEP) and the sit-up orthostatic stress test, acquired before and after the RT program. RESULTS In contrast to the untrained controls, individuals in the RT group experienced significantly increased FVC and FEV1 (both P<.01) in association with improved quality of sleep, cough, and speech. Sympathetically (phase II) and parasympathetically (phase IV) mediated baroreflex sensitivity both significantly (P<.05) increased during the 5s MEP. During the orthostatic stress test, improved autonomic control over heart rate was associated with significantly increased sympathetic and parasympathetic modulation (low- and high-frequency change: P<.01 and P<.05, respectively). CONCLUSIONS Inspiratory-expiratory pressure threshold RT is a promising technique to positively affect both respiratory and cardiovascular dysregulation observed in persons with chronic SCI.
Collapse
Affiliation(s)
- Bonnie E Legg Ditterline
- Department of Physiology, University of Louisville, Louisville, KY; Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Sevda C Aslan
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - David C Randall
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Susan J Harkema
- Department of Physiology, University of Louisville, Louisville, KY; Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Camilo Castillo
- Department of Neurological Surgery, University of Louisville, Louisville, KY
| | - Alexander V Ovechkin
- Department of Physiology, University of Louisville, Louisville, KY; Department of Neurological Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
30
|
Lee AHX, Phillips AA, Krassioukov AV. Increased Central Arterial Stiffness after Spinal Cord Injury: Contributing Factors, Implications, and Possible Interventions. J Neurotrauma 2017; 34:1129-1140. [DOI: 10.1089/neu.2016.4694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Amanda H. X. Lee
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A. Phillips
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Experimental Medicine Program, Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
32
|
Accelerated Arterial Stiffening Change in Early Years of Spinal Cord Injury. Am J Phys Med Rehabil 2017; 96:120-123. [DOI: 10.1097/phm.0000000000000565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Yamamoto S, Yokomizo Y, Akai T, Chiyoda T, Goto H, Masaki Y. Acute aortic occlusion in a patient with chronic paralysis due to spinal cord injury: a case report. Surg Case Rep 2016; 2:121. [PMID: 27807802 PMCID: PMC5093095 DOI: 10.1186/s40792-016-0251-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/27/2016] [Indexed: 11/14/2022] Open
Abstract
Patients with spinal cord injury experience changes in the cardiovascular system and a high morbidity associated with peripheral artery disease. We report a case of acute aortic occlusion in a patient with chronic paralysis due to spinal cord injury. A 65-year-old man with chronic paralysis due to spinal cord injury developed mottling of the right extremity. Because of the complete tetraplegia, the patient had no subjective symptoms. Computed tomography revealed occlusion of the infrarenal abdominal aorta. An emergency thromboembolectomy established adequate blood flow, and the postoperative course was uneventful. The loss of muscle mass might be an advantage in avoiding ischemia reperfusion syndrome. Early detection of acute aortic occlusion and immediate reperfusion are primarily important, but patients with chronic paralysis present a risk of delay in detection, diagnosis, and treatment of acute aortic occlusion because of motor or sensory deficits. Although rare, it is necessary to consider acute aortic occlusion in the case of acute limb ischemia in patients with chronic paralysis due to spinal cord injury.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Surgery, Ome Municipal General Hospital, 4-16-5, Higashi Ome, Ome-shi, Tokyo, 198-0042, Japan.
| | - Yuriko Yokomizo
- Department of Surgery, Ome Municipal General Hospital, 4-16-5, Higashi Ome, Ome-shi, Tokyo, 198-0042, Japan
| | - Takafumi Akai
- Department of Surgery, Ome Municipal General Hospital, 4-16-5, Higashi Ome, Ome-shi, Tokyo, 198-0042, Japan
| | - Takehiro Chiyoda
- Department of Surgery, Ome Municipal General Hospital, 4-16-5, Higashi Ome, Ome-shi, Tokyo, 198-0042, Japan
| | - Hiroshi Goto
- Department of Surgery, Ome Municipal General Hospital, 4-16-5, Higashi Ome, Ome-shi, Tokyo, 198-0042, Japan
| | - Yukiyoshi Masaki
- Department of Surgery, Ome Municipal General Hospital, 4-16-5, Higashi Ome, Ome-shi, Tokyo, 198-0042, Japan
| |
Collapse
|
34
|
Brown R, Celermajer D, Macefield V, Sander M. The Effect of Nitric Oxide Inhibition in Spinal Cord Injured Humans with and without Preserved Sympathetic Control of the Vasculature. Front Neurosci 2016; 10:95. [PMID: 27013957 PMCID: PMC4785190 DOI: 10.3389/fnins.2016.00095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Systemic pharmacological inhibition of nitric oxide (NO) causes a hypertensive response, which has been attributed both to inhibition of peripheral NO-mediated vasodilatation and to inhibition of central nervous NO-production leading to a later onset sympathetic vasoconstriction. In the present study we aimed to test the importance of these two mechanisms by comparing the time-courses of the hypertensive responses in spinal cord injured (SCI) subjects with varying degrees of loss of sympathetic vascular control depending on level of injury as well as able-bodied controls. We hypothesized that high level SCI with no sympathetic vasoconstrictor control would have an abbreviated time-course of the hypertensive response to the NO-inhibitor L-NAME, because they would lack the late onset sympathetic component to the hypertensive response. NO production was blocked in 12 subjects with SCI and 6 controls by intravenous infusion of L-NAME (1.55–2.7 mg/kg). We measured blood pressure, heart rate, and vascular conductance in the carotid, brachial, and femoral arteries before, during, and after 1 h of L-NAME in a 4-h protocol. Peak increases in mean arterial pressure were significantly larger in high level SCI vs. controls: 32 ± 6 vs. 12 ± 2 mmHg (both groups received 1.55 mg/kg). The decreases in vascular conductance in the brachial and femoral vascular beds were also larger in the high level SCI group, whereas decreases in heart rate and carotid conductance were not significantly different between the groups. There were no indications of any abbreviated responses in blood pressure or vascular conductance in the high level SCI compared to control. The mid level and low-level SCI subject had responses similar to controls. These data confirm previous reports that NO inhibition causes a larger increase in blood pressure in high level SCI, and extend these data by providing evidence for differences in vascular conductance in the limbs. The current data do not support an obligatory important role for sympathetic vasoconstriction in maintaining the hypertensive response to L-NAME in humans.
Collapse
Affiliation(s)
- Rachael Brown
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - David Celermajer
- Department of Medicine, Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | - Vaughan Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - Mikael Sander
- Neuroscience Research Australia Sydney, NSW, Australia
| |
Collapse
|
35
|
Phillips AA, Matin N, Frias B, Zheng MMZ, Jia M, West C, Dorrance AM, Laher I, Krassioukov AV. Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection. J Physiol 2016; 594:1677-88. [PMID: 26634420 DOI: 10.1113/jp270925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
High-thoracic or cervical spinal cord injury (SCI) is associated with several critical clinical conditions related to impaired cerebrovascular health, including: 300-400% increased risk of stroke, cognitive decline and diminished cerebral blood flow regulation. The purpose of this study was to examine the influence of high-thoracic (T3 spinal segment) SCI on cerebrovascular structure and function, as well as molecular markers of profibrosis. Seven weeks after complete T3 spinal cord transection (T3-SCI, n = 15) or sham injury (Sham, n = 10), rats were sacrificed for either middle cerebral artery (MCA) structure and function assessments via ex vivo pressure myography, or immunohistochemical analyses. Myogenic tone was unchanged, but over a range of transmural pressures, inward remodelling occurred after T3-SCI with a 40% reduction in distensibility (both P < 0.05), and a 33% reduction in vasoconstrictive reactivity to 5-HT trending toward significance (P = 0.09). After T3-SCI, the MCA had more collagen I (42%), collagen III (24%), transforming growth factor β (47%) and angiotensin II receptor type 2 (132%), 27% less elastin as well as concurrent increased wall thickness and reduced lumen diameter (all P < 0.05). Sympathetic innervation (tyrosine hydroxylase-positive axon density) and endothelium-dependent dilatation (carbachol) of the MCA were not different between groups. This study demonstrates profibrosis and hypertrophic inward remodelling within the largest cerebral artery after high-thoracic SCI, leading to increased stiffness and possibly impaired reactivity. These deleterious adaptations would substantially undermine the capacity for regulation of cerebral blood flow and probably underlie several cerebrovascular clinical conditions in the SCI population.
Collapse
Affiliation(s)
- A A Phillips
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Centre for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia, Vancouver, Canada
| | - N Matin
- Pharmacology, Michigan State University, East Lansing, MI, USA
| | - B Frias
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - M M Z Zheng
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - M Jia
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - C West
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A M Dorrance
- Pharmacology, Michigan State University, East Lansing, MI, USA
| | - I Laher
- Deptartment of Pharmacology and Therapeutic, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Lee JS, Fang SY, Roan JN, Jou IM, Lam CF. Spinal cord injury enhances arterial expression and reactivity of α1-adrenergic receptors-mechanistic investigation into autonomic dysreflexia. Spine J 2016; 16:65-71. [PMID: 26433037 DOI: 10.1016/j.spinee.2015.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/26/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Autonomic dysreflexia (AD) usually presents with a significant increase in blood pressure, and uncontrollable autonomic response to stimuli below the level of spinal cord injury (SCI). PURPOSE This study analyzed the vasomotor function and molecular changes in the peripheral arteries below the lesion of SCI to characterize the mechanism of autonomic dysreflexia. STUDY DESIGN This was a randomized experimental study in rats. METHODS Contusive SCI was induced using a force-calibrated weight-drop device at the T10 level in anesthetized rats. Two weeks after severe SCI, blood flow in the femoral arteries was measured, and the vasomotor function and expression of α1-adrenergic receptors were analyzed. RESULTS Blood flow in the femoral artery was significantly reduced in rats with SCI (8.0±2 vs. 17.5±4 mL/min, SCI vs. control, respectively; p=.016). The contraction responses of femoral artery segments to cumulative addition of α1-adrenergic agonist phenylephrine were significantly enhanced in rats with SCI. Expression of α1-adrenergic receptor was upregulated in the medial layer of femoral artery vascular homogenates of these rats. CONCLUSION Our study provides evidence demonstrating that prolonged denervation below the lesion level following SCI results in a compensatory increased expression of α1-adrenergic receptors in the arterial smooth muscle layer, thereby enhancing the responsiveness to α1-adrenergic agonist and potentiating the development of AD.
Collapse
Affiliation(s)
- Jung-Shun Lee
- Divisions of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - Shih-Yuan Fang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - Jun-Neng Roan
- Divisions of Cardiovascular Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan; Department of Anesthesiology, Buddhist Tzu Chi General Hospital and Tzu Chi University School of Medicine, 707 Chung Yang Rd Section 3, Hualien 907, Taiwan.
| |
Collapse
|
37
|
Panisset MG, Galea MP, El-Ansary D. Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord 2015; 54:84-92. [PMID: 26345485 DOI: 10.1038/sc.2015.150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To systematically identify and assess the evidence on the efficacy of exercise initiated early after traumatic spinal cord injury (SCI). METHODS A comprehensive search (Any-2014) of eleven databases identified studies evaluating exercise interventions initiated within 12 weeks after SCI on muscle and bone loss in paralyzed limbs and comparing with standard care or immobilization. Two reviewers assessed methodological quality. One reviewer extracted data and critiqued results according to the Spinal Cord Injury Rehabilitation Evidence body of evidence framework. RESULTS A total of 2811 titles were screened. Eleven studies were included: five randomized controlled trials, four cohort studies and two within-subject control studies. All provided level II evidence with a moderate risk of bias. Two studies found significant positive effects of high-load FES-resisted stance on physiological measures of muscle. Three reported positive effects of 3 months of Functional Electrical Stimulation (FES) on muscle size. Two studies found positive effects of 6-month body-weight supported treadmill training or FES on trabecular bone using pQCT. CONCLUSION We found consistent evidence of positive effects of early exercise on muscle, possibly related to load intensity of the protocol. However, the heterogeneity of interventions and outcomes makes this determination speculative. Evidence for the effectiveness of early exercise on bone is scant and confined to measures of trabecular bone mineral density via pQCT. Transparent reporting of methods and variability of data, combined with standardization of valid and sensitive measures of muscle atrophy and bone loss, could facilitate future meta-analysis on this topic.
Collapse
Affiliation(s)
- M G Panisset
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - M P Galea
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - D El-Ansary
- Department of Physiotherapy, Melbourne School of Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma 2015; 32:1927-42. [PMID: 25962761 DOI: 10.1089/neu.2015.3903] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) issues after spinal cord injury (SCI) are of paramount importance considering they are the leading cause of death in this population. Disruption of autonomic pathways leads to a highly unstable CV system, with impaired blood pressure (BP) and heart rate regulation. In addition to low resting BP, on a daily basis the majority of those with SCI suffer from transient episodes of aberrantly low and high BP (termed orthostatic hypotension and autonomic dysreflexia, respectively). In fact, autonomic issues, including resolution of autonomic dysreflexia, are frequently ranked by individuals with high-level SCI to be of greater priority than walking again. Owing to a combination of these autonomic disturbances and a myriad of lifestyle factors, the pernicious process of CV disease is accelerated post-SCI. Unfortunately, these secondary consequences of SCI are only beginning to receive appropriate clinical attention. Immediately after high-level SCI, major CV abnormalities present in the form of neurogenic shock. After subsiding, new issues related to BP instability arise, including orthostatic hypotension and autonomic dysreflexia. This review describes autonomic control over the CV system before injury and the mechanisms underlying CV abnormalities post-SCI, while also detailing the end-organ consequences, including those of the heart, as well as the systemic and cerebral vasculature. The tertiary impact of CV dysfunction will also be discussed, such as the potential impediment of rehabilitation, and impaired cognitive function. In the recent past, our understanding of autonomic dysfunctions post-SCI has been greatly enhanced; however, it is vital to further develop our understanding of the long-term consequences of these conditions, which will equip us to better manage CV disease morbidity and mortality in this population.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Center for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia , Kelowna, British Columbia, Canada .,2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,4 Department of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Galea MP, Dunlop SA, Marshall R, Clark J, Churilov L. Early exercise after spinal cord injury ('Switch-On'): study protocol for a randomised controlled trial. Trials 2015; 16:7. [PMID: 25563584 PMCID: PMC4320571 DOI: 10.1186/1745-6215-16-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
Background Spinal cord injury (SCI) leads to a profound muscular atrophy, bone loss and bone fragility. While there is evidence that exercising paralysed muscles may lead to reversal of muscle atrophy in the chronic period after SCI, there is little evidence that exercise can prevent muscle changes early after injury. Moreover, whether exercise can prevent bone loss and microarchitectural decay is not clear. Methods/Design A multi-centre, parallel group, assessor-blinded randomised controlled trial will be conducted. Fifty participants with acute spinal cord injury will be recruited from four SCI units in Australia and New Zealand. Participants will be stratified by site and AIS status and randomised to an experimental or control group. Experimental participants will receive a 12-week programme of functional electrical stimulation (FES)-assisted cycling. Control participants will receive a 12-week programme of passive cycling. The primary outcome is muscle cross-sectional area of the thigh and calf measured using magnetic resonance images (MRI) of the leg. Secondary outcomes include serum biomarkers of SCI osteoporosis (sclerostin, P1NP and β-CTX), markers of immune function (IL-6, IL-10, FGF2, INF-γ, TNF-α), neurological function, body composition, depression and quality of life. Leg MRIs will be measured by a single blinded assessor based in Melbourne. Serum samples will be analysed in a central laboratory. All other characteristics will be measured at baseline and 12 weeks by blinded and trained assessors at each site. The first participant was randomised on 27 November 2012. Discussion The results of this trial will determine the relative effectiveness of a 12-week programme of FES-assisted cycling versus passive cycling in preventing muscle atrophy and maintaining skeletal integrity after spinal cord injury. Trial registration ACTRN12611001079932 (18 October 2011)
Collapse
Affiliation(s)
- Mary P Galea
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
40
|
Guhanarayan G, Jablonski J, Witkowski S. Circulating angiogenic cell population responses to 10 days of reduced physical activity. J Appl Physiol (1985) 2014; 117:500-6. [PMID: 25012029 DOI: 10.1152/japplphysiol.00087.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circulating angiogenic cells (CACs) are a diverse group that have been identified as predictors of cardiovascular health and are inversely proportional to cardiovascular disease (CVD) outcomes. Inactivity is a growing concern in industrialized nations and is an independent risk factor for CVD. There is limited evidence regarding the impact of reduced physical activity (rPA) on different CAC populations. The purpose of this study was to evaluate the effect of objectively monitored rPA with maintained energy balance on two CAC populations (CFU and CD34(+) cells), intracellular nitric oxide (NOi), and genes related to NO production in active, healthy men. Participants (age 25 ± 2.9 yr) refrained from structured physical activity for 10 days, which was reflected by a significant reduction in time in vigorous + very vigorous intensity activity (P = 0.03). Sedentary time tended to increase (P = 0.06) with rPA. CFU CACs have been characterized as mainly monocytic and lymphocytic cells. We found significant reductions in both the number of CFU CACs (-35.69%, P = 0.01) and CFU CAC NOi (-33.84%, P = 0.03). Neither NOi nor the number of CD34(+) cells, which are hematopoietic and endothelial progenitors, changed with rPA. We found no significant differences in NO-related gene expression or oxidative stress-related gene expression with rPA in either CAC type. Therefore, we conclude that although various CAC populations have been related to vascular health, regular physical activity is necessary to maintain CAC NOi and the vulnerability of CACs to short-term reductions in physical activity is population specific.
Collapse
Affiliation(s)
- Gayatri Guhanarayan
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Julianne Jablonski
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Sarah Witkowski
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
41
|
Venturelli M, Amann M, Layec G, McDaniel J, Trinity JD, Fjeldstad AS, Ives SJ, Yonnet G, Richardson RS. Passive leg movement-induced hyperaemia with a spinal cord lesion: evidence of preserved vascular function. Acta Physiol (Oxf) 2014; 210:429-39. [PMID: 24119139 DOI: 10.1111/apha.12173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/21/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED A spinal cord injury (SCI) clearly results in greater cardiovascular risk; however, accompanying changes in peripheral vascular structure below the lesion mean that the real impact of a SCI on vascular function is unclear. AIM Therefore, utilizing passive leg movement-induced (PLM) hyperaemia, an index of nitric oxide (NO)-dependent vascular function and the central hemodynamic response to this intervention, we studied eight individuals with a SCI and eight age-matched controls (CTRL). METHODS Specifically, we assessed heart rate (HR), stroke volume (SV), cardiac output (CO), mean arterial pressure (MAP), leg blood flow (LBF) and thigh composition. RESULTS In CTRL, passive movement transiently decreased MAP and increased HR and CO from baseline by 2.5 ± 1 mmHg, 7 ± 2 bpm and 0.5 ± 0.1 L min(-1) respectively. In SCI, HR and CO responses were unidentifiable. LBF increased to a greater extent in CTRL (515 ± 41 ∆mL min(-1)) compared with SCI, (126 ± 25 ∆mL min(-1)) (P < 0.05). There was a strong relationship between ∆LBF and thigh muscle volume (r = 0.95). After normalizing ∆LBF for this strong relationship (∆LBF/muscle volume), there was evidence of preserved vascular function in SCI (CTRL: 120 ± 9; SCI 104 ± 11 mL min(-1) L(-1)). A comparison of ∆LBF in the passively moved and stationary leg, to partition the contribution of the blood flow response, implied that 35% of the hyperaemia resulted from cardioacceleration in the CTRL, whereas all the hyperaemia appeared peripheral in origin in the SCI. CONCLUSION Thus, utilizing PLM-induced hyperaemia as marker of vascular function, it is evident that peripheral vascular impairment is not an obligatory accompaniment to a SCI.
Collapse
Affiliation(s)
- M. Venturelli
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences; University of Verona; Verona Italy
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
| | - M. Amann
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
- Department of Exercise and Sport Science; University of Utah; Salt Lake City UT USA
| | - G. Layec
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
| | - J. McDaniel
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
| | - J. D. Trinity
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
| | - A. S. Fjeldstad
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
| | - S. J. Ives
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
| | - G. Yonnet
- Department of Neurology; University of Utah; Salt Lake City UT USA
| | - R. S. Richardson
- Department of Internal Medicine; Division of Geriatrics; University of Utah; Salt Lake City UT USA
- Geriatric Research, Education, and Clinical Center; George E. Whalen VA Medical Center; Salt Lake City UT USA
- Department of Exercise and Sport Science; University of Utah; Salt Lake City UT USA
| |
Collapse
|
42
|
Applanation tonometry: a reliable technique to assess aortic pulse wave velocity in spinal cord injury. Spinal Cord 2014; 52:272-5. [DOI: 10.1038/sc.2013.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/08/2022]
|
43
|
Weber T, Ducos M, Mulder E, Beijer Å, Herrera F, Zange J, Degens H, Bloch W, Rittweger J. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading. Clin Physiol Funct Imaging 2013; 34:218-29. [PMID: 24119174 DOI: 10.1111/cpf.12087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 12/17/2022]
Abstract
In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (P<0·001) and soleus fibre size was reduced by 8·5 ± 13% (P = 0·016). However, WoRPD remained unaffected as indicated by an unchanged loss of relative plantar flexor power between pre- and postexperiments (P = 0·88). Blood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability.
Collapse
Affiliation(s)
- Tobias Weber
- German Aerospace Center, Institute of Aerospace Medicine, Space Physiology, Cologne, Germany; Department of Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Not just quantity: Gluteus maximus muscle characteristics in able-bodied and SCI individuals – Implications for tissue viability. J Tissue Viability 2013; 22:74-82. [DOI: 10.1016/j.jtv.2013.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022]
|
45
|
Bell JW, Chen D, Bahls M, Newcomer SC. Altered resting hemodynamics in lower-extremity arteries of individuals with spinal cord injury. J Spinal Cord Med 2013; 36:104-11. [PMID: 23809524 PMCID: PMC3595957 DOI: 10.1179/2045772312y.0000000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate lower-extremity arterial hemodynamics in individuals with spinal cord injury (SCI). We hypothesized that oscillatory shear index would be altered and resting mean shear would be higher in the lower-extremity arteries of SCI. RESEARCH Cross-sectional study of men and women with SCIs compared to able-bodied controls. SUBJECTS Subjects included 105 ages 18-72 years with American Spinal Injury Association (ASIA) Impairment Scale grades A, B, or C and injury duration at least 5 years. Subjects were matched for age and cardiovascular disease risk factors with 156 able-bodied controls. METHODS Diameter and blood velocity were determined with subject at rest via ultrasound in superficial femoral, popliteal, brachial, and carotid arteries. Mean shear, antegrade shear, retrograde shear, and oscillatory shear index were calculated. RESULTS Oscillatory shear index was lower in SCI compared to controls for superficial femoral (0.16 ± 0.10 vs. 0.26 ± 0.06, P < 0.01) and popliteal arteries (0.20 ± 0.11 vs. 0.26 ± 0.05, P < 0.01). Mean shear rate was higher in SCI compared to controls for superficial femoral (43.54 ± 28.0 vs. 20.48 ± 13.1/second, P < 0.01) and popliteal arteries (30.43 ± 28.1 vs. 11.68 ± 9.5/second, P < 0.01). CONCLUSIONS The altered resting hemodynamics in SCI are consistent with an atheroprotective hemodynamic environment.
Collapse
Affiliation(s)
- Jeffrey W. Bell
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA; and Department of Science, Southwest Minnesota State University, Marshall, MN, USA
| | - David Chen
- Rehabilitation Institute of Chicago, Spinal Cord Injury Rehabilitation Program, Chicago, IL, USA
| | - Martin Bahls
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Sean C. Newcomer
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA,Correspondence to: Sean C. Newcomer, Department of Health and Kinesiology, Purdue University, Lambert Fieldhouse, 800 West Stadium Avenue, West Lafayette, IN 47907, USA. E-mail:
| |
Collapse
|
46
|
Welsch MA, Blalock P, Credeur DP, Parish TR. Comparison of brachial artery vasoreactivity in elite power athletes and age-matched controls. PLoS One 2013; 8:e54718. [PMID: 23359214 PMCID: PMC3554649 DOI: 10.1371/journal.pone.0054718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Elite endurance athletes typically have larger arteries contributing to greater skeletal muscle blood flow, oxygen and nutrient delivery and improved physical performance. Few studies have examined structural and functional properties of arteries in power athletes. PURPOSE To compare the size and vasoreactivity of the brachial artery of elite power athletes to age-matched controls. It was hypothesized brachial artery diameters of athletes would be larger, have less vasodilation in response to cuff occlusion, but more constriction after a cold pressor test than age-matched controls. METHODS Eight elite power athletes (age = 23 ± 2 years) and ten controls (age = 22 ± 1 yrs) were studied. High-resolution ultrasonography was used to assess brachial artery diameters at rest and following 5 minutes of forearm occlusion (Brachial Artery Flow Mediated Dilation = BAFMD) and a cold pressor test (CPT). Basic fitness measures included a handgrip test and 3-minute step test. RESULTS Brachial arteries of athletes were larger (Athletes 5.39 ± 1.51 vs. CONTROLS 3.73 ± 0.71 mm, p<0.05), had greater vasodilatory (BAFMD%: Athletes: 8.21 ± 1.78 vs. CONTROLS 5.69 ± 1.56%) and constrictor (CPT %: Athletes: -2.95 ± 1.07 vs. CONTROLS -1.20 ± 0.48%) responses, compared to controls. Vascular operating range (VOR = Peak dilation+Peak Constriction) was also greater in athletes (VOR: Athletes: 0.55 ± 0.15 vs. CONTROLS 0.25 ± 0.18 mm, p<0.05). Athletes had superior handgrip strength (Athletes: 55.92 ± 17.06 vs. CONTROLS 36.77 ± 17.06 kg, p<0.05) but similar heart rate responses at peak (Athletes: 123 ± 16 vs. CONTROLS 130 ± 25 bpm, p>0.05) and 1 minute recovery (Athletes: 88 ± 21 vs. CONTROLS 98 ± 26 bpm, p>0.05) following the step test. CONCLUSION Elite power athletes have larger brachial arteries, and greater vasoreactivity (greater vasodilatory and constrictor responses) than age-matched controls, contributing to a significantly greater VOR. These data extend the existence of an 'athlete's artery' as previously shown for elite endurance athletes to elite power athletes, and presents a hypothetical explanation for the functional significance of the 'power athlete's artery'.
Collapse
Affiliation(s)
- Michael A Welsch
- Department of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA.
| | | | | | | |
Collapse
|
47
|
Bilateral difference of superficial and deep femoral artery haemodynamic and anatomical parameters. Artery Res 2013. [DOI: 10.1016/j.artres.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Weber T, Ducos M, Mulder E, Herrera F, Brüggemann GP, Bloch W, Rittweger J. The specific role of gravitational accelerations for arterial adaptations. J Appl Physiol (1985) 2012; 114:387-93. [PMID: 23221961 DOI: 10.1152/japplphysiol.01117.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is mostly agreed that arterial adaptations occur, among others, in response to changes in mechanical stimuli. Models like bed rest, spinal cord injury, or limb suspension have been applied to study vascular adaptations to unloading in humans. However, these models cannot distinguish the role of muscle contractions and the role of gravitational accelerations for arterial adaptation. The HEPHAISTOS orthosis allows normal ambulation, while it significantly reduces force generation in the lower leg muscles. Eleven subjects wore HEPHAISTOS unilaterally for 56 days and were followed up for another 4 wk. Arterial diameters, intima media thickness (IMT), flow-mediated dilation (FMD), and resting blood flow (BF(rest)) were measured using high-frequency ultrasonography. Arterial adaptations were investigated in the superficial femoral artery (SFA), the brachial artery (BA), and the carotid artery (CA). Mean SFA resting diameter was decreased from 6.57 mm (SD = 0.74 mm) at baseline to 5.77 mm (SD = 0.87 mm) at the end of the intervention (P < 0.001), whereas SFA wall-to-lumen ratio, SFA BF(rest), and SFA FMD remained unaffected throughout the study. The application of HEPHAISTOS had no effect on structure and function of the systemic control sites, the BA, and the CA. Our findings highlight the importance of muscular contractions for arterial diameter adaptations. Moreover, we propose that FMD and wall-to-lumen ratio are unaffected by ambulating with the HEPHAISTOS orthosis, which is suggestive of habitual acceleration profiles in the lower leg constituting an important stimulus for the maintenance of FMD and wall-to-lumen ratio.
Collapse
Affiliation(s)
- Tobias Weber
- German Aerospace Center, Institute of Aerospace Medicine, Space Physiology, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
West CR, AlYahya A, Laher I, Krassioukov A. Peripheral vascular function in spinal cord injury: a systematic review. Spinal Cord 2012. [DOI: 10.1038/sc.2012.136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
van der Woude LHV, de Groot S, Postema K, Bussmann JBJ, Janssen TWJ, Post MWM. Active LifestyLe Rehabilitation interventions in aging spinal cord injury (ALLRISC): a multicentre research program. Disabil Rehabil 2012; 35:1097-103. [PMID: 23030594 DOI: 10.3109/09638288.2012.718407] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND With today's specialized medical care, life expectancy of persons with a spinal cord injury (SCI) has considerably improved. With increasing age and time since injury, many individuals with SCI, however, show a serious inactive lifestyle, associated with deconditioning and secondary health conditions (SHCs) (e.g. pressure sores, urinary and respiratory tract infections, osteoporosis, upper-extremity pain, obesity, diabetes, cardiovascular disease) and resulting in reduced participation and quality of life (QoL). Avoiding this downward spiral, is crucial. OBJECTIVES To understand possible deconditioning and SHCs in persons aging with a SCI in the context of active lifestyle, fitness, participation and QoL and to examine interventions that enhance active lifestyle, fitness, participation and QoL and help prevent some of the SHCs. METHODS A multicentre multidisciplinary research program (Active LifestyLe Rehabilitation Interventions in aging Spinal Cord injury, ALLRISC) in the setting of the long-standing Dutch SCI-rehabilitation clinical research network. RESULTS ALLRISC is a four-study research program addressing inactive lifestyle, deconditioning, and SHCs and their associations in people aging with SCI. The program consists of a cross-sectional study (n = 300) and three randomized clinical trials. All studies share a focus on fitness, active lifestyle, SHCs and deconditioning and outcome measures on these and other (participation, QoL) domains. It is hypothesized that a self-management program, low-intensity wheelchair exercise and hybrid functional electrical stimulation-supported leg and handcycling are effective interventions to enhance active life style and fitness, help to prevent some of the important SHCs in chronic SCI and improve participation and QoL. CONCLUSION ALLRISC aims to provide evidence-based preventive components of a rehabilitation aftercare system that preserves functioning in aging persons with SCI.
Collapse
Affiliation(s)
- L H V van der Woude
- Centre for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|