1
|
Ji W, Nightingale TE, Zhao F, Fritz NE, Phillips AA, Sisto SA, Nash MS, Badr MS, Wecht JM, Mateika JH, Panza GS. The Clinical Relevance of Autonomic Dysfunction, Cerebral Hemodynamics, and Sleep Interactions in Individuals Living With SCI. Arch Phys Med Rehabil 2024; 105:166-176. [PMID: 37625532 DOI: 10.1016/j.apmr.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
A myriad of physiological impairments is seen in individuals after a spinal cord injury (SCI). These include altered autonomic function, cerebral hemodynamics, and sleep. These physiological systems are interconnected and likely insidiously interact leading to secondary complications. These impairments negatively influence quality of life. A comprehensive review of these systems, and their interplay, may improve clinical treatment and the rehabilitation plan of individuals living with SCI. Thus, these physiological measures should receive more clinical consideration. This special communication introduces the under investigated autonomic dysfunction, cerebral hemodynamics, and sleep disorders in people with SCI to stakeholders involved in SCI rehabilitation. We also discuss the linkage between autonomic dysfunction, cerebral hemodynamics, and sleep disorders and some secondary outcomes are discussed. Recent evidence is synthesized to make clinical recommendations on the assessment and potential management of important autonomic, cerebral hemodynamics, and sleep-related dysfunction in people with SCI. Finally, a few recommendations for clinicians and researchers are provided.
Collapse
Affiliation(s)
- Wenjie Ji
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Trauma Science Research, University of Birmingham, Birmingham, UK; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI
| | - Nora E Fritz
- Department of Health Care Sciences, Program of Physical Therapy, Detroit, MI; Department of Neurology, Wayne State University, Detroit, MI
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular institute, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada; RESTORE.network, University of Calgary, Calgary, AB, Canad
| | - Sue Ann Sisto
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Mark S Nash
- Department of Neurological Surgery, Physical Medicine & Rehabilitation Physical Therapy, Miami, FL; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Jill M Wecht
- James J Peters VA Medical Center, Department of Spinal Cord Injury Research, Bronx, NY; Icahn School of Medicine Mount Sinai, Departments of Rehabilitation and Human Performance, and Medicine Performance, and Medicine, New York, NY
| | - Jason H Mateika
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI.
| |
Collapse
|
2
|
Wecht JM, Weir JP, Katzelnick CG, Dyson-Hudson TA, Bauman WA, Kirshblum SC. Clinical trial of home blood pressure monitoring following midodrine administration in hypotensive individuals with spinal cord injury. J Spinal Cord Med 2023; 46:531-539. [PMID: 36972219 DOI: 10.1080/10790268.2021.1977904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Individuals with spinal cord injury (SCI) above thoracic level-6 (T6) experience impaired descending cortical control of the autonomic nervous system which predisposes them to blood pressure (BP) instability, including includes hypotension, orthostatic hypotension (OH), and autonomic dysreflexia (AD). However, many individuals do not report symptoms of these BP disorders, and because there are few treatment options that have been proven safe and effective for use in the SCI population, most individuals remain untreated. OBJECTIVE The primary aim of this investigation was to determine the effects of midodrine (10 mg) prescribed TID or BID in the home environment, compared to placebo, on 30-day BP, study withdrawals, and symptom reporting associated with OH and AD in hypotensive individuals with SCI. DESIGN/METHODS Participants were randomly assigned to received midodrine/placebo or placebo/midodrine, with a 2-weeks washout period in between, and both the participants and investigators were blinded to randomization order. Study medication was taken 2 or 3 times/day, depending on their sleep/wake schedule, BP, and any related symptoms were recorded before and 1 h after each dosage and periodically throughout the day. RESULTS Nineteen individuals with SCI were recruited; however, 9 withdrew prior to completion of the full protocol. A total of 1892 BP recordings (75 ± 48 recordings/participant/30-day period) were collected in the 19 participants over the two 30-day monitoring periods. Average 30-day systolic BP was significantly increased with midodrine compared to placebo (114 ± 14 vs. 96 ± 11 mmHg, respectively; P = 0.004), and midodrine significantly reduced the number of hypotensive BP recordings compared to placebo (38.7 ± 41.9 vs. 73.3 ± 40.6, respectively; P = 0.01). However, compared to placebo, midodrine increased fluctuations in BP, did not improve symptoms of OH, but did significantly worsen the intensity of symptoms associated with AD (P = 0.03). CONCLUSION Midodrine (10 mg) administered in the home environment effectively increases BP and reduces the incidence of hypotension; however these beneficial effects come at the expense of worsened BP instability and AD symptom intensity.
Collapse
Affiliation(s)
- Jill M Wecht
- James J Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rehabilitation Medicine and Human Performance at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph P Weir
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Caitlyn G Katzelnick
- James J Peters VA Medical Center, Bronx, NY, USA
- Kessler Foundation, West Orange, NJ, USA
| | - Trevor A Dyson-Hudson
- Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William A Bauman
- James J Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rehabilitation Medicine and Human Performance at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven C Kirshblum
- Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Kessler Institute for Rehabilitation, West Orange, NJ, USA
| |
Collapse
|
3
|
Costa-Pinto R, Jones DA, Udy AA, Warrillow SJ, Bellomo R. Midodrine use in critically ill patients: a narrative review. CRIT CARE RESUSC 2022; 24:298-308. [PMID: 38047013 PMCID: PMC10692611 DOI: 10.51893/2022.4.r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Midodrine is a peripherally acting, oral α-agonist that is increasingly used in intensive care units despite conflicting evidence for its effectiveness. It has pharmacological effects on blood vessels as well as pupillary, cardiac, renal, gastrointestinal, genitourinary, lymphatic and skin tissue. It has approval for use as a treatment for orthostatic hypotension, but a surge in interest over the past decade has prompted its use for a growing number of off-label indications. In critically ill patients, midodrine has been used as either an adjunctive oral therapy to wean vasoplegic patients off low dose intravenous vasopressor infusions, or as an oral vasopressor agent to prevent or minimise the need for intravenous infusion. Clinical trials have mostly focused on midodrine as an intravenous vasopressor weaning agent. Early retrospective studies supported its use for this indication, but more recent randomised controlled trials have largely refuted this practice. Key questions remain on its role in managing critically ill patients before intensive care admission, during intensive care stay, and following discharge. This narrative review presents a comprehensive overview of midodrine use for the critical care physician and highlights why lingering questions around ideal patient selection, dosing, timing of initiation, and efficacy of midodrine for critically ill patients remain unanswered.
Collapse
Affiliation(s)
- Rahul Costa-Pinto
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Daryl A. Jones
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew A. Udy
- Department of Intensive Care, Alfred Hospital, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen J. Warrillow
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, University of Melbourne and Austin Hospital, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Inchan A, Pathomwichaiwat T, Bualeong T, Tipratchadaporn S, Chootip K. Anti-hypotensive effect of “Yahom Navakot” in rats with orthostatic hypotension. J Tradit Complement Med 2022; 12:180-189. [PMID: 35528473 PMCID: PMC9072801 DOI: 10.1016/j.jtcme.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background and aim Yahom Navakot (YN), is a Thai traditional medicine, consisting of 54 plants, for treating fainting and dizziness. Thus, YN might relieve orthostatic hypotension (OH) symptoms, but its therapeutic action is unclear. Therefore, this study evaluated YN in OH rats, using a head-up tilt test (HUT). Experimental procedure Rats were anesthetized, and OH induced via a 90oHUT, before and after administering vehicle, a YN powder suspension (10, 100 mg/kg), a YN aqueous extract (100 mg/kg), and midodrine (5 mg/kg). The systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), pulse pressure (PP) and heart rate (HR) were determined via the carotid artery. Plasma noradrenaline (NA) was evaluated. YN-induced vasoconstriction of isolated rat aorta rings was determined using organ bath technique. Results and conclusion Baseline BP increased with the 100 mg/kg YN powder suspension, the YN aqueous extract or midodrine, while HR decreased, compared with vehicle and control. 90oHUT rapidly reduced SBP, DPB and MAP, but increased HR, for control and vehicle-treated groups, but BP was steady with the 100 mg/kg YN powder suspension, the YN aqueous extract or midodrine. The 90oHUT-increase in HR was most pronounced with the 100 mg/kg YN powder suspension (the traditional formulation). This accords with increased plasma NA. YN also induced vasoconstriction in rat aorta via α1-receptor activation. Thus, the anti-hypotensive action of YN involved a stimulating effect on the heart and blood vessels via sympathetic activation. The results support the traditional use of YN and demonstrated the effectiveness of YN for OH prevention. Yahom Navakot is an effective treatment for orthostatic hypotension. Yahom Navakot possesses chronotropic effect and vasoconstrictor action. Yahom Navakot increases plasma noradrenaline leading to the increase in blood pressure.
Collapse
Affiliation(s)
- Anjaree Inchan
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanika Pathomwichaiwat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Sireeruckhachati Nature Learning Park, Mahidol University, 999 Phuttamonthon 4 Road, Salaya Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Tippaporn Bualeong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
- Corresponding author.
| |
Collapse
|
5
|
Hayes BD, Fossey MPM, Poormasjedi-Meibod MS, Erskine E, Soriano JE, Scott B, Rosentreter R, Granville DJ, Phillips AA, West CR. Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats. Am J Physiol Heart Circ Physiol 2021; 321:H716-H727. [PMID: 34448635 DOI: 10.1152/ajpheart.00239.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) impairs the cardiovascular responses to postural challenge, leading to the development of orthostatic hypotension (OH). Here, we apply lower body negative pressure (LBNP) to rodents with high-level SCI to demonstrate the usefulness of LBNP as a model for experimental OH studies, and to explore the effect of simulated OH on cardiovascular and cerebrovascular function following SCI. Male Wistar rats (n = 34) were subjected to a sham or T3-SCI surgery and survived into the chronic period postinjury (i.e., 8 wk). Cardiac function was tracked via ultrasound pre- to post-SCI to demonstrate the clinical utility of our model. At study termination, we conducted left-ventricular (LV) catheterization and insonated the middle cerebral artery to investigate the hemodynamic, cardiac, and cerebrovascular response to a mild dose of LBNP that is sufficient to mimic clinically defined OH in rats with T3-SCI but not sham animals. In response to mimicked OH, there was a greater decline in stroke volume, cardiac output, maximal LV pressure, and blood pressure in SCI compared with sham (P < 0.034), whereas heart rate was increased in sham but decreased in SCI (P < 0.029). SCI animals also had an exaggerated reduction in peak, minimum and mean middle cerebral artery flow, for a given change in blood pressure, in response to LBNP (P < 0.033), implying impaired dynamic cerebral autoregulation. Using a preclinical SCI model of OH, we demonstrate that complete high thoracic SCI impairs the cardiac response to OH and disrupts dynamic cerebral autoregulation.NEW & NOTEWORTHY This is the first use of LBNP to interrogate the cardiac and cerebrovascular responses to simulated OH in a preclinical study of SCI. Here, we demonstrate the utility of our simulated OH model and use it to demonstrate that SCI impairs the cardiac response to simulated OH and disrupts dynamic cerebrovascular autoregulation.
Collapse
Affiliation(s)
- Brian D Hayes
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary Pauline Mona Fossey
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Erin Erskine
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan Elaine Soriano
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Berkeley Scott
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Rosentreter
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A Phillips
- Departments of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Krassioukov A, Linsenmeyer TA, Beck LA, Elliott S, Gorman P, Kirshblum S, Vogel L, Wecht J, Clay S. Evaluation and Management of Autonomic Dysreflexia and Other Autonomic Dysfunctions: Preventing the Highs and Lows. J Spinal Cord Med 2021; 44:631-683. [PMID: 34270391 PMCID: PMC8288133 DOI: 10.1080/10790268.2021.1925058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Andrei Krassioukov
- University of British Columbia, Vancouver, British Columbia, BC
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, BC, Canada
| | - Todd A Linsenmeyer
- Kessler Institute for Rehabilitation, West Orange, NJ
- Rutgers University Medical School, Newark, NJ
| | | | - Stacy Elliott
- University of British Columbia, Vancouver, British Columbia, BC
| | | | - Steven Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ
- Rutgers University Medical School, Newark, NJ
| | | | - Jill Wecht
- Icahn School of Medicine at Mt Sinai, New York, NY
| | - Sarah Clay
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
7
|
Donovan J, Forrest G, Linsenmeyer T, Kirshblum S. Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-020-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Krassioukov A, Linsenmeyer TA, Beck LA, Elliott S, Gorman P, Kirshblum S, Vogel L, Wecht J, Clay S. Evaluation and Management of Autonomic Dysreflexia and Other Autonomic Dysfunctions: Preventing the Highs and Lows: Management of Blood Pressure, Sweating, and Temperature Dysfunction. Top Spinal Cord Inj Rehabil 2021; 27:225-290. [PMID: 34108837 PMCID: PMC8152175 DOI: 10.46292/sci2702-225] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Stacy Elliott
- University of British Columbia, Vancouver, British Columbia, CA
| | | | | | | | - Jill Wecht
- Icahn School of Medicine at Mt Sinai, New York, NY
| | - Sarah Clay
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
9
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
10
|
Double-blinded, placebo-controlled crossover trial to determine the effects of midodrine on blood pressure during cognitive testing in persons with SCI. Spinal Cord 2020; 58:959-969. [PMID: 32203065 PMCID: PMC7483245 DOI: 10.1038/s41393-020-0448-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
Study Design: Clinical trial. Objectives: Individuals with spinal cord injury (SCI) above T6 experience impaired descending cortical control of the autonomic nervous system which predisposes them to hypotension. However, treatment of hypotension is uncommon in the SCI population because there are few safe and effective pharmacological options available. The primary aim of this investigation was to test the efficacy of a single dose of midodrine (10 mg), compared to placebo, to increase and normalize systolic blood pressure (SBP) between 110–120 mmHg during cognitive testing in hypotensive individuals with SCI. Secondary aims were to determine the effects of midodrine on cerebral blood flow velocity (CBFv) and global cognitive function. Setting: United States clinical research laboratory. Methods: Forty-one healthy hypotensive individuals with chronic (≥ 1-year post-injury) SCI participated in this 2-day study. Seated SBP, CBFv, cognitive performance were monitored before and after administration of identical encapsulated tablets, containing either midodrine or placebo. Results: Compared to placebo, midodrine increased SBP (4±13 vs. 18±24 mmHg, respectively; p<0.05); however, responses varied widely with midodrine (−15.7 to +68.6 mmHg). Further, the proportion of SBP recordings within the normotensive range did not improve during cognitive testing with midodrine compared to placebo. Although higher SBP was associated with higher CBFv (p=0.02), global cognitive function was not improved with midodrine. Conclusions: The findings indicate that midodrine increases SBP and may be beneficial in some hypotensive patients with SCI; however, large heterogeneity of responses to midodrine suggest careful monitoring of patients following administration.
Collapse
|
11
|
Saleem S, Sarafis ZK, Lee AHX, Squair JW, Barak OF, Sober-Williams E, Suraj R, Coombs GB, Mijacika T, West CR, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA. Spinal Cord Disruption Is Associated with a Loss of Cushing-Like Blood Pressure Interactions. J Neurotrauma 2019; 36:1487-1490. [PMID: 30458117 DOI: 10.1089/neu.2018.5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The capacity of the cerebrovasculature to buffer changes in blood pressure (BP) likely plays an important role in the prevention of stroke, which is three- to fourfold more common after spinal cord injury (SCI). Although the directional relationship between BP and cerebral blood flow (CBF) has traditionally been thought to travel solely from BP to CBF, a Cushing-like mechanism functioning in the inverse direction, in which changes in CBF influence BP, has recently been revealed using Granger causality analysis. Although both CBF buffering of BP and the Cushing-like mechanism are influenced by the sympathetic nervous system, we do not understand the impact of disruption of descending sympathetic pathways within the spinal cord, caused by cervical SCI on these regulatory systems. We hypothesized that people with cervical SCI would have greater BP to CBF transmission, as well as a reduced Cushing-like mechanism. The directional relationships between mean arterial BP (MAP; Finometer® PRO) and middle cerebral artery blood velocity (MCAv; transcranial Doppler) were assessed at rest in 14 cervical SCI subjects and 16 uninjured individuals using Granger causality analysis, while also accounting for end-tidal CO2 tension. Those with SCI exhibited 66% increased forward MAP→MCAv information transmission as compared with the uninjured group (p = 0.0003), indicating reduced cerebrovascular buffering of BP, and did not have a predominant backward Cushing-like MCAv→MAP phenotype. These results indicate that both forward and backward communication between BP and CBF are influenced by SCI, which may be associated with impaired cerebrovascular BP buffering after SCI as well as widespread BP instability.
Collapse
Affiliation(s)
- Saqib Saleem
- 1 Department of Electrical & Computer Engineering, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Zoe K Sarafis
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda H X Lee
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,3 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,3 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,5 MD/PhD Training Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Otto F Barak
- 6 Faculty of Medicine, University of Novi Sad, Novi Sad, Republic of Serbia.,7 Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Elin Sober-Williams
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Rejitha Suraj
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| | - Geoff B Coombs
- 8 Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Tanja Mijacika
- 9 Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Christopher R West
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- 8 Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Zeljko Dujic
- 9 Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Yu-Chieh Tzeng
- 10 Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Aaron A Phillips
- 4 Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Foothills Calgary, Alberta, Canada
| |
Collapse
|
12
|
Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, Ovechkin AV, Krassioukov A, Harkema SJ. Epidural Spinal Cord Stimulation of Lumbosacral Networks Modulates Arterial Blood Pressure in Individuals With Spinal Cord Injury-Induced Cardiovascular Deficits. Front Physiol 2018; 9:565. [PMID: 29867586 PMCID: PMC5968099 DOI: 10.3389/fphys.2018.00565] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
Disruption of motor and autonomic pathways induced by spinal cord injury (SCI) often leads to persistent low arterial blood pressure and orthostatic intolerance. Spinal cord epidural stimulation (scES) has been shown to enable independent standing and voluntary movement in individuals with clinically motor complete SCI. In this study, we addressed whether scES configured to activate motor lumbosacral networks can also modulate arterial blood pressure by assessing continuous, beat-by-beat blood pressure and lower extremity electromyography during supine and standing in seven individuals with C5-T4 SCI. In three research participants with arterial hypotension, orthostatic intolerance, and low levels of circulating catecholamines (group 1), scES applied while supine and standing resulted in increased arterial blood pressure. In four research participants without evidence of arterial hypotension or orthostatic intolerance and normative circulating catecholamines (group 2), scES did not induce significant increases in arterial blood pressure. During scES, there were no significant differences in electromyographic (EMG) activity between group 1 and group 2. In group 1, during standing assisted by scES, blood pressure was maintained at 119/72 ± 7/14 mmHg (mean ± SD) compared with 70/45 ± 5/7 mmHg without scES. In group 2 there were no arterial blood pressure changes during standing with or without scES. These findings demonstrate that scES configured to facilitate motor function can acutely increase arterial blood pressure in individuals with SCI-induced cardiovascular deficits.
Collapse
Affiliation(s)
- Sevda C Aslan
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Bonnie E Legg Ditterline
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Michael C Park
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery and Neurology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Claudia A Angeli
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, Louisville, KY, United States
| | - Enrico Rejc
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Yangsheng Chen
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Alexander V Ovechkin
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Andrei Krassioukov
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, Louisville, KY, United States
| |
Collapse
|
13
|
Walter M, Krassioukov AV. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury. Phys Med Rehabil Clin N Am 2018; 29:245-266. [PMID: 29627087 DOI: 10.1016/j.pmr.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health.
Collapse
Affiliation(s)
- Matthias Walter
- Faculty of Medicine, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Andrei V Krassioukov
- Division of Physical Medicine and Rehabilitation, Department of Medicine, International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver Coastal Health, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada.
| |
Collapse
|
14
|
Canosa-Hermida E, Mondelo-García C, Ferreiro-Velasco ME, Salvador-de la Barrera S, Montoto-Marqués A, Rodríguez-Sotillo A, Vizoso-Hermida JR. Refractory orthostatic hypotension in a patient with a spinal cord injury: Treatment with droxidopa. J Spinal Cord Med 2018; 41:115-118. [PMID: 28114866 PMCID: PMC5810796 DOI: 10.1080/10790268.2016.1274093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
CONTEXT Orthostatic hypotension (OH) is a common complication in patients with a spinal cord injury, mainly affecting complete injuries above neurological level T6. It is generally more severe during the acute phase but can remain symptomatic for several years. FINDINGS A 65-year-old male with a grade ASIA A post-traumatic cervical spinal cord injury, at neurological level C4, presenting with symptomatic refractory OH. Increased blood pressure (BP) levels and an overall clinical improvement was observed after administering an increasing dose of droxidopa. Treatment was started at a dose of 100 mg twice daily (bid), one to be taken upon rising in the morning and another one in the afternoon, at least three hours before bedtime. According to the patient's symptomatic response, each individual dose was increased by 100 mg at 48-hour intervals. Both increased mean BP levels and a subjective symptomatic improvement were evidenced at a dose of 300 mg bid. CLINICAL RELEVANCE Treatment with droxidopa increases BP levels and improves symptoms related to refractory OH using all physical and pharmacological measures available. It could therefore constitute an effective alternative treatment for OH in patients with a spinal cord injury.
Collapse
Affiliation(s)
- Eva Canosa-Hermida
- Spinal Cord Injury Unit,Correspondence to: Eva Canosa-Hermida, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC). Sergas. Universidade da Coruña (UDC). As Xubias, 84. 15006 A Coruña, Spain.
| | - Cristina Mondelo-García
- Pharmacy Service, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC). Sergas. Universidade da Coruña (UDC), Coruña, Spain
| | | | | | | | | | - José Ramón Vizoso-Hermida
- Pharmacy Service, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC). Sergas. Universidade da Coruña (UDC), Coruña, Spain
| |
Collapse
|
15
|
Wecht JM, Bauman WA. Implication of altered autonomic control for orthostatic tolerance in SCI. Auton Neurosci 2018; 209:51-58. [DOI: 10.1016/j.autneu.2017.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/16/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
|
16
|
Serrador JM, Freeman R. Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress. Front Neurol 2017; 8:103. [PMID: 28373858 PMCID: PMC5357636 DOI: 10.3389/fneur.2017.00103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
Cerebral blood flow (CBF) and consequently orthostatic tolerance when upright depends on dilation of the cerebral vasculature in the face of reduced perfusion pressure associated with the hydrostatic gradient. However, it is still unclear if cholinergic activation plays a role in this dilation. To determine if enhancing central cholinergic activity with the centrally acting acetylcholinesterase inhibitor, physostigmine would increase CBF when upright compared to the peripherally acting acetylcholinesterase inhibitor, neostigmine, or saline. We performed a randomized double-blind dose-ranging study that took place over 3 days in a hospital-based research lab. Eight healthy controls (six women and two men, mean age, 26 years; range 21–33) were given infusions of physostigmine, neostigmine, or saline on three different days. Five-minute tilts were repeated at baseline (no infusion), Dose 1 (0.2 μg/kg/min physostigmine; 0.1 μg/kg/min neostigmine) and Dose 2 (0.6 μg/kg/min physostigmine or 0.3 μg/kg/min neostigmine), and placebo (0.9% NaCl). Cerebral blood velocity, beat-to-beat blood pressure, and end-tidal CO2 were continuously measured during tilts. Physostigmine (0.6 μg/kg/min) resulted in higher cerebral blood velocity during tilt (90.5 ± 1.5%) than the equivalent neostigmine (85.5 ± 2.6%) or saline (84.8 ± 1.7%) trials (P < 0.05). This increase occurred despite a greater postural hypocapnia, suggesting physostigmine had a direct vasodilatory effect on the cerebral vasculature. Cerebral hypoperfusion induced by repeated tilts was eliminated by infusion of physostigmine not neostigmine. In conclusion, this study provides the first evidence that enhancement of central, not peripheral, cholinergic activity attenuates the physiological decrease in CBF seen during upright tilt. These data support the need for further research to determine if enhancing central cholinergic activity may improve symptoms in patients with symptomatic orthostatic intolerance.
Collapse
Affiliation(s)
- Jorge M Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences, Newark, NJ, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
17
|
Wecht JM, Weir JP, Bauman WA. Inter-day reliability of blood pressure and cerebral blood flow velocities in persons with spinal cord injury and intact controls. J Spinal Cord Med 2017; 40:159-169. [PMID: 26860937 PMCID: PMC5430472 DOI: 10.1080/10790268.2015.1135556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Due to interruption of cardiovascular autonomic control unstable blood pressure (BP) is common in individuals with spinal cord injury (SCI) above the sixth thoracic vertebral level. The impact of unstable BP on cerebral blood flow (CBF) is not well appreciated, but symptoms associated with altered cerebral perfusion are reported, which can negatively impact daily life activities. METHODS We measured seated BP and CBF in participants with SCI and able-bodied (AB) controls on three laboratory visits to determine the inter-day reliability (intraclass correlation coefficient: ICC). BP was assessed at the finger using photoplethysmography and at the brachial artery with manual sphygmomanometry. CBF velocities (CBFv) were assessed at the middle cerebral artery using transcranial Doppler (TCD) ultrasound. RESULTS Data were collected in 15 participants with chronic SCI (C3-T4) and 10 AB controls, the groups did not differ for age, height, weight or BMI; however, brachial BP (P < 0.001), finger BP (P < 0.01) and CBFv (P < 0.05) were significantly lower in the SCI group compared to the controls. The inter-day ICC for brachial BP ranged from 0.51 to 0.79, whereas the ICC for finger BP was not as high (0.17 to 0.47). The inter-day ICC for CBFv ranged from 0.45 to 0.96, indicating fair to substantial reliability. CONCLUSIONS These data indicate good inter-day reliability of brachial BP and TCD recording of CBFv; however, the assessment of finger BP appears to be somewhat less reliable. In addition, these data confirm reduced resting CBFv in association with hypotension in individuals with SCI compared to matched controls with low BP.
Collapse
Affiliation(s)
- Jill M. Wecht
- VA RR&D Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, NY, USA,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA,Correspondence to: Jill M. Wecht, Center of Excellence: Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center; Room 1E-02, 130 West Kingsbridge Rd., Bronx, NY 10468, USA. E-mail:
| | - Joseph P. Weir
- Department of Health, Sport and Exercise Sciences, The University of Kansas, Lawrence, KS, USA
| | - William A. Bauman
- VA RR&D Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, NY, USA,The Medical Service, James J. Peters VAMC, Bronx, NY, USA,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Wecht JM, Weir JP, Radulovic M, Bauman WA. Effects of midodrine and L-NAME on systemic and cerebral hemodynamics during cognitive activation in spinal cord injury and intact controls. Physiol Rep 2016; 4:4/3/e12683. [PMID: 26869679 PMCID: PMC4758920 DOI: 10.14814/phy2.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously showed that increases in mean arterial pressure (MAP) following administration of midodrine hydrochloride (MH) and nitro‐L‐arginine methyl ester (L‐NAME) resulted in increased mean cerebral blood flow velocity (MFV) during head‐up tilt in hypotensive individuals with spinal cord injury (SCI) and question if this same association was evident during cognitive activation. Herein, we report MAP and MFV during two serial subtraction tasks (SSt) given before (predrug) and after (postdrug) administration of MH; (10 mg), L‐NAME (1 mg/kg) or no drug (ND) in 15 subjects with SCI compared to nine able‐bodied (AB) controls. Three‐way factorial analysis of variance (ANOVA) models were used to determine significant main and interaction effects for group (SCI, AB), visit (MH, L‐NAME, ND), and time (predrug, postdrug) for MAP and MFV during the two SSt. The three‐way interaction was significant for MAP (F = 4.262; P = 0.020); both MH (30 ± 26 mmHg; P < 0.05) and L‐NAME (27 ± 22 mmHg; P < 0.01) significantly increased MAP in the SCI group, but not in the AB group. There was a significant visit by time interaction for MFV suggesting an increase from predrug to postdrug following L‐NAME (6 ± 8 cm/sec; P < 0.05) and MH (4 ± 7 cm/sec; P < 0.05), regardless of study group, with little change following ND (3 ± 3 cm/sec). The relationship between change in MAP and MFV was significant in the SCI group following administration of MH (r2 = 0.38; P < 0.05) and L‐NAME (r2 = 0.32; P < 0.05). These antihypotensive agents, at the doses tested, raised MAP, which was associated with an increase MFV during cognitive activation in hypotensive subjects with SCI.
Collapse
Affiliation(s)
- Jill M Wecht
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, New York The Medical Service, James J. Peters VAMC, Bronx New York Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, The University of Kansas, Lawrence, Kansas
| | - Miroslav Radulovic
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, New York The Medical Service, James J. Peters VAMC, Bronx New York Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VAMC, Bronx, New York The Medical Service, James J. Peters VAMC, Bronx New York Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Rianne Ravensbergen HJ, de Groot S, Post MW, Bongers-Janssen HM, van der Woude LH, Claydon VE. Is There an Association Between Markers of Cardiovascular Autonomic Dysfunction at Discharge From Rehabilitation and Participation 1 and 5 Years Later in Individuals With Spinal Cord Injury? Arch Phys Med Rehabil 2016; 97:1431-1439. [PMID: 27084265 DOI: 10.1016/j.apmr.2016.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine whether physical activity and participation 1 and 5 years after discharge are associated with measures of cardiovascular autonomic function: prevalence of hypotension and reduced peak heart rate at discharge from initial inpatient spinal cord injury (SCI) rehabilitation. DESIGN Prospective cohort study. SETTING Rehabilitation centers. PARTICIPANTS Individuals with SCI (N=146). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES We recorded markers of cardiovascular autonomic dysfunction (resting blood pressure and peak heart rate) and personal and lesion characteristics at the time of discharge from rehabilitation. Parameters for participation (social health status dimension of the Sickness Impact Profile) and physical activity (Physical Activity Scale for Individuals with Physical Disabilities [PASIPD]) were measured 1 and 5 years after discharge. Effects of prevalence of cardiovascular autonomic dysfunction were analyzed using linear regression analysis while correcting for possible confounders. RESULTS We found no significant association between hypotension and social health status dimension of the Sickness Impact Profile or PASIPD, either at 1 or at 5 years after discharge. A significant association between peak heart rate and social health status dimension of the Sickness Impact Profile was found at 1 year after discharge, showing poorer participation in individuals with low peak heart rate (ie, cardiovascular autonomic dysfunction). The unadjusted relation between peak heart rate and the social health status dimension of the Sickness Impact Profile was significant at 5 years, but not when adjusted for confounders. We found associations between peak heart rate and PASIPD for both 1 and 5 years after discharge; however, these were not significant after correction for potential confounding factors. CONCLUSIONS Autonomic dysfunction after SCI is a crucial factor influencing quality of life. We found that cardiovascular autonomic impairment, assessed from low peak heart rate, was associated with reduced participation after 1 year. The results suggest that peak heart rate at discharge from rehabilitation after SCI should be used to identify those needing additional support to facilitate physical activity and participation after discharge.
Collapse
Affiliation(s)
- H J Rianne Ravensbergen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; International Collaboration On Repair Discoveries, Vancouver, BC, Canada; Research Institute MOVE Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Sonja de Groot
- Amsterdam Rehabilitation Research Center
- Reade, Amsterdam, The Netherlands; Center for Human Movement Sciences Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel W Post
- Brain Center Rudolf Magnus and Center of Excellence in Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat, Utrecht, The Netherlands; Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lucas H van der Woude
- Center for Human Movement Sciences Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Ali A, Farid S, Amin M, Kassem M, Al-Garem N, Al-Ghobashy M. Comparative Clinical Pharmacokinetics of Midodrine and Its Active Metabolite Desglymidodrine in Cirrhotic Patients with Tense Ascites Versus Healthy Volunteers. Clin Drug Investig 2016; 36:147-155. [PMID: 26597181 DOI: 10.1007/s40261-015-0359-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Midodrine is an α-agonist prodrug of desglymidodrine used for the management of hypotension, and can also be used for hepatorenal syndrome and cirrhotic patients with tense ascites. The objective of the present work was to study the clinical pharmacokinetic parameters of midodrine and its active metabolite desglymidodrine in cirrhotic patients with tense ascites, which may help in dose selection and improve treatment outcome. METHOD This was a prospective, open-label, single-dose, parallel-group study. At first, a pilot study was performed on one healthy volunteer by taking serial blood samples at scheduled time intervals to validate the method of analysis and sampling times. The full study was then conducted by selecting 12 cirrhotic patients with tense ascites in one group and taking nine blood samples. We also selected five healthy volunteers as the control group and took 11 blood samples. RESULTS Statistically significant differences were observed between the healthy volunteer group and the patients group in the area under the concentration versus time curve (AUC0-t) and maximum plasma concentration (Cmax) values of midodrine and desglymidodrine. Based on the results of the pharmacokinetic analysis, the patient group was further subdivided into those receiving the interacting drug ranitidine (five patients) and those not receiving the interacting drug (seven patients). CONCLUSIONS Pharmacokinetic parameters of midodrine can differ significantly in cirrhotic patients with tense ascites from those in healthy individuals. Drug monitoring, dose adjustments, and drug-drug interactions should all be considered during therapy in this vulnerable patient group.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Pharmaceutics, Egyptian Russian University, Badr City, Egypt.
- , Qualiobia, Shebeen-Elquanater, Kafr Taha, Egypt.
| | - Samar Farid
- Department of Clinical Pharmacy, Cairo University, Cairo, Egypt
| | - Mona Amin
- Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Kassem
- Department of Pharmaceutics, Cairo University, Cairo, Egypt
| | - Nouman Al-Garem
- Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Medhat Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Bioanalysis Research Group, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Wecht JM, La Fountaine MF, Handrakis JP, West CR, Phillips A, Ditor DS, Sharif H, Bauman WA, Krassioukov AV. Autonomic Nervous System Dysfunction Following Spinal Cord Injury: Cardiovascular, Cerebrovascular, and Thermoregulatory Effects. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2015. [DOI: 10.1007/s40141-015-0093-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Currie KD, Wong SC, Warburton DE, Krassioukov AV. Reliability of the sit-up test in individuals with spinal cord injury. J Spinal Cord Med 2015; 38:563-6. [PMID: 25738545 PMCID: PMC4612216 DOI: 10.1179/2045772315y.0000000004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To determine the day-to-day reliability of blood pressure responses during a sit-up test in individuals with a traumatic spinal cord injury (SCI). DESIGN Within-subject, repeated measures design. SETTING Community outpatient assessments at a research laboratory at the University of British Columbia. PARTICIPANTS Five men and three women with traumatic SCI (age: 31 ± 6 years; C4-T11; American Spinal Injury Association Impairment Scale A-B; 1-17 years post-injury). OUTCOME MEASURE Maximum change in systolic (ΔSBP) and diastolic (ΔDBP) blood pressure upon passively moving from a supine to seated position. RESULTS The average values for ΔSBP were -11 ± 13 mmHg (range -38 to 3 mmHg) for visit 1, and -12 ± 8 mmHg (range -26 to -1 mmHg) for visit 2. The average values for ΔDBP were -9 ± 8 mmHg (range -21 to 0 mmHg) for visit 1, and -13 ± 8 mmHg (range -29 to -3 mmHg) for visit 2. The ΔSBP demonstrated substantial reliability with an intraclass correlation coefficient of 0.79 (P = 0.006; 95% CI 0.250-0.953), while the ΔDBP demonstrated almost perfect reliability with an intraclass correlation coefficient of 0.92 (P < 0.001; 95% CI 0.645-0.983). The smallest detectable differences in ΔSBP and ΔDBP were 7 mmHg and 6 mmHg, respectively. CONCLUSION Blood pressure responses to the sit-up test are reliable in individuals with SCI, which supports its implementation as a practical bedside assessment for orthostatic hypotension in this at risk population.
Collapse
Affiliation(s)
- Katharine D. Currie
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shirley C. Wong
- ICORD, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Darren E. Warburton
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- Correspondence to: Andrei V. Krassioukov, ICORD-BSCC, University of British Columbia, 818 West 10th Avenue, Vancouver, BC, Canada, V5Z 1M9.
| |
Collapse
|
23
|
Krassioukov A, West C. The role of autonomic function on sport performance in athletes with spinal cord injury. PM R 2015; 6:S58-65. [PMID: 25134753 DOI: 10.1016/j.pmrj.2014.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/05/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022]
Abstract
Devastating paralysis, autonomic dysfunction, and abnormal cardiovascular control present significant hemodynamic challenges to individuals with spinal cord injury (SCI), especially during exercise. In general, resting arterial pressure after SCI is lower than with able-bodied individuals and is commonly associated with persistent orthostatic intolerance along with transient episodes of life-threatening hypertension, known as "autonomic dysreflexia." During exercise, the loss of central and reflexive cardiovascular control attenuates maximal heart rate and impairs blood pressure regulation and blood redistribution, which ultimately reduces venous return, stroke volume, and cardiac output. Thermoregulation also is severely compromised in high-lesion SCI, a problem that is compounded when competing in hot and humid conditions. There is some evidence that enhancing venous return via lower body positive pressure or abdominal binding improves exercise performance, as do cooling strategies. Athletes with SCI also have been documented to self-induce autonomic dysreflexia before competition with a view of increasing blood pressure and improving their performance, a technique known as "boosting." For health safety reasons, boosting is officially banned by the International Paralympics Committee. This article addresses the complex issue of how the autonomic nervous system affects sports performance in athletes with SCI, with a specific focus on the potential debilitating effects of deranged cardiovascular control.
Collapse
Affiliation(s)
- Andrei Krassioukov
- International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada∗; International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada(†).
| | - Christopher West
- International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada∗
| |
Collapse
|
24
|
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DER. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J Appl Physiol (1985) 2014; 116:645-53. [PMID: 24436297 DOI: 10.1152/japplphysiol.01090.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Individuals with spinal cord injury (SCI) above the T6 spinal segment suffer from orthostatic intolerance. How cerebral blood flow (CBF) responds to orthostatic challenges in SCI is poorly understood. Furthermore, it is unclear how interventions meant to improve orthostatic tolerance in SCI influence CBF. This study aimed to examine 1) the acute regional CBF responses to rapid changes in blood pressure (BP) during orthostatic stress in individuals with SCI and able-bodied (AB) individuals; and 2) the effect of midodrine (alpha1-agonist) on orthostatic tolerance and CBF regulation in SCI. Ten individuals with SCI >T6, and 10 age- and sex-matched AB controls had beat-by-beat BP and middle and posterior cerebral artery blood velocity (MCAv, PCAv, respectively) recorded during a progressive tilt-test to quantify the acute CBF response and orthostatic tolerance. Dynamic MCAv and PCAv to BP relationships were evaluated continuously in the time domain and frequency domain (via transfer function analysis). The SCI group was tested again after administration of 10 mg midodrine to elevate BP. Coherence (i.e., linearity) was elevated in SCI between BP-MCAv and BP-PCAv by 35% and 22%, respectively, compared with AB, whereas SCI BP-PCAv gain (i.e., magnitudinal relationship) was reduced 30% compared with AB (all P < 0.05). The acute (i.e., 0-30 s after tilt) MCAv and PCAv responses were similar between groups. In individuals with SCI, midodrine led to improved PCAv responses 30-60 s following tilt (10 ± 3% vs. 4 ± 2% decline; P < 0.05), and a 59% improvement in orthostatic tolerance (P < 0.01). The vertebrobasilar region may be particularly susceptible to hypoperfusion in SCI, leading to increased orthostatic intolerance.
Collapse
Affiliation(s)
- Aaron A Phillips
- Cardiovascular Physiology and Rehabilitation Laboratory, Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
25
|
Ravensbergen HJCR, de Groot S, Post MWM, Slootman HJ, van der Woude LHV, Claydon VE. Cardiovascular function after spinal cord injury: prevalence and progression of dysfunction during inpatient rehabilitation and 5 years following discharge. Neurorehabil Neural Repair 2013; 28:219-29. [PMID: 24243916 DOI: 10.1177/1545968313504542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autonomic dysfunction after spinal cord injury (SCI) is an under-researched area when compared with motor and sensory dysfunction. Cardiovascular autonomic dysfunction is a particular concern, leading to impaired control of blood pressure and heart rate. OBJECTIVES (1) To determine the prevalence of hypotension in individuals with SCI during and after rehabilitation; (2) To investigate changes in cardiovascular variables during and after rehabilitation; (3) To evaluate the influence of personal and lesion characteristics on cardiovascular variables. METHODS Cardiovascular variables (resting systolic [SAP] and diastolic [DAP] arterial pressures and resting [HRrest] and peak heart rates [HRpeak]) were measured on 5 test occasions: start of inpatient rehabilitation, 3 months later, at discharge, and at 1 and 5 years after discharge. The time course and effects of personal and lesion characteristics on cardiovascular variables were studied using multilevel regression analyses. RESULTS The prevalence of hypotension was unchanged during rehabilitation and for 5 years after discharge. Odds for hypotension were highest in those with cervical and high thoracic lesions, younger individuals, and men. DAP increased during the 5 years after discharge. HRrest decreased during and after rehabilitation. SAP, DAP, HRrest, and HRpeak were lowest in those with cervical and high thoracic lesions. SAP and DAP increased with age; HRpeak decreased with age. CONCLUSIONS These longitudinal data provide normative values for blood pressure and heart rate changes with time after injury according to lesion and personal characteristics. These results can be used to guide clinical practice and place changes in cardiovascular function caused by interventions in perspective.
Collapse
|
26
|
Midodrine for orthostatic hypotension: a systematic review and meta-analysis of clinical trials. J Gen Intern Med 2013; 28:1496-503. [PMID: 23775146 PMCID: PMC3797331 DOI: 10.1007/s11606-013-2520-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To perform a systematic review and meta-analysis of clinical trials evaluating the efficacy and safety of midodrine in orthostatic hypotension (OH). METHODS We searched major databases and related conference proceedings through June 30, 2012. Two reviewers independently selected studies and extracted data. Random-effects meta-analysis was used to pool the outcome measures across studies. RESULTS Seven trials were included in the efficacy analysis (enrolling 325 patients, mean age 53 years) and two additional trials were included in the safety analysis. Compared to placebo, the mean change in systolic blood pressure was 4.9 mmHg (p = 0.65) and the mean change in mean arterial pressure from supine to standing was -1.7 mmHg (p = 0.45). The change in standing systolic blood pressure before and after giving midodrine was 21.5 mmHg (p < 0.001). A significant improvement was seen in patients' and investigators' global assessment symptoms scale (a mean difference of 0.70 [95 % CI 0.30-1.09; p < 0.001] and 0.80 [95 % CI 0.76-0.85; p < 0.001], respectively). There was a significant increase in risk of piloerection, scalp pruritis, urinary hesitancy/retention, supine hypertension and scalp paresthesia after giving midodrine. The quality of evidence was limited by imprecision, heterogeneity and increased risk of bias. CONCLUSION There is insufficient and low quality evidence to support the use of midodrine for OH.
Collapse
|
27
|
Carlozzi NE, Fyffe D, Morin KG, Byrne R, Tulsky DS, Victorson D, Lai JS, Wecht JM. Impact of blood pressure dysregulation on health-related quality of life in persons with spinal cord injury: development of a conceptual model. Arch Phys Med Rehabil 2013; 94:1721-30. [PMID: 23499779 DOI: 10.1016/j.apmr.2013.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To identify medically relevant aspects of blood pressure dysregulation (BPD) related to quality of life in individuals with spinal cord injury (SCI), and to propose an integrated conceptual framework based on input from both individuals with SCI and their clinical providers. This framework will serve as a guide for the development of a patient-reported outcome (PRO) measure specifically related to BPD. DESIGN Three focus groups with individuals with SCI and 3 groups with SCI providers were analyzed using grounded-theory based qualitative analysis to ascertain how blood pressure impacts health-related quality of life (HRQOL) in individuals with SCI. SETTING Focus groups were conducted at 2 Veterans Affairs medical centers and a research center. PARTICIPANTS Individuals with SCI (n=27) in 3 focus groups and clinical providers (n=25) in 3 focus groups. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Not applicable. RESULTS Qualitative analysis indicated that all focus groups spent the highest percentage of time discussing symptoms of BPD (39%), followed by precipitators/causes of BPD (16%), preventative actions (15%), corrective actions (12%), and the impact that BPD has on social or emotional functioning (8%). While patient/consumer focus groups and provider focus groups raised similar issues, providers spent more time discussing precipitators/causes of BPD and preventative actions (38%) than patient/consumer groups (24%). CONCLUSIONS These results suggest that BPD uniquely and adversely impacts HRQOL in persons with SCI. While both individuals with SCI and their providers highlighted the relevant symptoms of BPD, the SCI providers offered additional detailed information regarding the precipitators/causes and what can be done to prevent/treat BPD. Further, the results suggest that persons with SCI are aware of how BPD impacts their HRQOL and are able to distinguish between subtle signs and symptoms. These findings exemplify the need for a validated and sensitive clinical measurement tool that can assess the extent to which BPD impacts HRQOL in patients with SCI.
Collapse
Affiliation(s)
- Noelle E Carlozzi
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sisto SA, Lorenz DJ, Hutchinson K, Wenzel L, Harkema SJ, Krassioukov A. Cardiovascular status of individuals with incomplete spinal cord injury from 7 NeuroRecovery Network rehabilitation centers. Arch Phys Med Rehabil 2012; 93:1578-87. [PMID: 22920455 DOI: 10.1016/j.apmr.2012.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/27/2012] [Accepted: 04/19/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine cardiovascular (CV) health in a large cohort of individuals with incomplete spinal cord injury (SCI). The CV health parameters of patients were compared based on American Spinal Injury Association Impairment Scale (AIS), neurologic level, sex, central cord syndrome, age, time since injury, Neuromuscular Recovery Scale, and total AIS motor score. DESIGN Cross-sectional study. SETTING Seven outpatient rehabilitation clinics. PARTICIPANTS Individuals (N=350) with incomplete AIS classification C and D were included in this analysis. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Heart rate, systolic and diastolic blood pressure during resting sitting and supine positions and after an orthostatic challenge. RESULTS CV parameters were highly variable and significantly differed based on patient position. Neurologic level (cervical, high and low thoracic) and age were most commonly associated with CV parameters where patients classified at the cervical level had the lowest resting CV parameters. After the orthostatic challenge, blood pressure was highest for the low thoracic group, and heart rate for the high thoracic group was higher. Time since SCI was negatively related to blood pressure at rest but not after orthostatic challenge. Men exhibited higher systolic blood pressure than women and lower heart rate. The prevalence of orthostatic hypotension (OH) was 21% and was related to the total motor score and resting seated blood pressures. Cervical injuries had the highest prevalence. CONCLUSIONS Resting CV parameters of blood pressure and heart rate are affected by position, age, and neurologic level. OH is more prevalent in cervical injuries, those with lower resting blood pressures and who are lower functioning. Results from this study provide reference for CV parameters for individuals with incomplete SCI. Future research is needed on the impact of exercise on CV parameters.
Collapse
Affiliation(s)
- Sue Ann Sisto
- Department of Physical Therapy, Division of Rehabilitation Sciences, Stony Brook University, Stony Brook, NY 11794-6018, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Bauman WA, Korsten MA, Radulovic M, Schilero GJ, Wecht JM, Spungen AM. 31st g. Heiner sell lectureship: secondary medical consequences of spinal cord injury. Top Spinal Cord Inj Rehabil 2012; 18:354-78. [PMID: 23459498 PMCID: PMC3584784 DOI: 10.1310/sci1804-354] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Persons with spinal cord injury (SCI) have secondary medical consequences of paralysis and/or the consequences of extreme inactivity. The metabolic changes that result from reduced activity include insulin resistance with carbohydrate disorders and dyslipidemia. A higher prevalence of coronary artery calcification was found in persons with SCI than that in matched able-bodied controls. A depression in anabolic hormones, circulating testosterone and growth hormone, has been described. Adverse soft tissue body composition changes of increased adiposity and reduced skeletal muscle are appreciated. Immobilization is the cause for sublesional disuse osteoporosis with an associated increased risk of fragility fracture. Bowel dysmotility affects all segments of the gastrointestinal tract, with an interest in better defining and addressing gastroesophageal reflux disease and difficulty with evacuation. Developing and testing more effective approaches to cleanse the bowel for elective colonoscopy are being evaluated. The extent of respiratory dysfunction depends on the level and completeness of SCI. Individuals with higher spinal lesions have both restrictive and obstructive airway disease. Pharmacological approaches and expiratory muscle training are being studied as interventions to improve pulmonary function and cough strength with the objective of reducing pulmonary complications. Persons with spinal lesions above the 6th thoracic level lack both cardiac and peripheral vascular mechanisms to maintain blood pressure, and they are frequently hypotensive, with even worse hypotension with upright posture. Persistent and/or orthostatic hypotension may predispose those with SCI to cognitive impairments. The safety and efficacy of anti-hypotensive agents to normalize blood pressure in persons with higher level cord lesions is being investigated.
Collapse
Affiliation(s)
- William A Bauman
- VA RR&D National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York ; Medical Service, James J. Peters VA Medical Center , Bronx, New York ; Department of Medicine, The Mount Sinai School of Medicine , New York, New York ; Department of Rehabilitation Medicine, The Mount Sinai School of Medicine , New York, New York
| | | | | | | | | | | |
Collapse
|
30
|
Orthostatic Effects of Midodrine Versus L-NAME on Cerebral Blood Flow and the Renin-Angiotensin-Aldosterone System in Tetraplegia. Arch Phys Med Rehabil 2011; 92:1789-95. [DOI: 10.1016/j.apmr.2011.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 12/17/2022]
|