1
|
Wang L, Chen X, Zheng W, Yang Y, Yang B, Chen Q, Li X, Liang T, Li B, Hu Y, Du J, Lu J, Chen N. The possible neural mechanism of neuropathic pain evoked by motor imagery in pediatric patients with complete spinal cord injury: A preliminary brain structure study based on VBM. Heliyon 2024; 10:e24569. [PMID: 38312693 PMCID: PMC10835172 DOI: 10.1016/j.heliyon.2024.e24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, we observed pediatric complete spinal cord injury (CSCI) patients receiving MI training and divided them into different groups according to the effect of motor imagery (MI) training on neuropathic pain (NP). Then, we retrospectively analysed the differences in brain structure of these groups before the MI training, identifying brain regions that may predict the effect of MI on NP. Thirty pediatric CSCI patients were included, including 12 patients who experienced NP during MI and 18 patients who did not experience NP during MI according to the MI training follow-up. The 3D high-resolution T1-weighted images of all subjects were obtained using a 3.0 T MRI system before MI training. A two-sample t-test was performed to evaluate the differences in gray matter volume (GMV) between patients who experienced NP and those who did not experience NP during MI. Receiver operating characteristic (ROC) analysis was performed to compute the sensitivity and specificity of the imaging biomarkers for the effect of MI on NP in pediatric CSCI patients. MI evoked NP in some of the pediatric CSCI patients. Compared with patients who did not experience NP, patients who experienced NP during MI showed larger GMV in the right primary sensorimotor cortex (PSMC) and insula. When using the GMV of the right PSMC and insula in combination as a predictor, the area under the curve (AUC) reached 0.824. Our study demonstrated that MI could evoke NP in some pediatric CSCI patients, but not in others. The individual differences in brain reorganization of the right PSMC and insula may contribute to the different effects of MI on NP. Moreover, the GMV of the right PSMC and insula in combination may be an effective indicator for screening pediatric CSCI patients before MI training therapy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, 100068, China
| | - Tengfei Liang
- Department of Medical Imaging, Affiliated Hospital of Hebei Engineering University, Handan, 056008, China
| | - Baowei Li
- Department of Medical Imaging, Affiliated Hospital of Hebei Engineering University, Handan, 056008, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| |
Collapse
|
2
|
Wang L, Zheng WM, Liang TF, Yang YH, Yang BN, Chen X, Chen Q, Li XJ, Lu J, Li BW, Chen N. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury. AJNR Am J Neuroradiol 2023; 44:611-617. [PMID: 37080724 PMCID: PMC10171374 DOI: 10.3174/ajnr.a7847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND PURPOSE Currently, there is no effective treatment for pediatric patients with complete spinal cord injury. Motor imagery has been proposed as an alternative to physical training for patients who are unable to move voluntarily. Our aim was to reveal the potential mechanism of motor imagery in the rehabilitation of pediatric complete spinal cord injury. MATERIALS AND METHODS Twenty-six pediatric patients with complete spinal cord injury and 26 age- and sex-matched healthy children as healthy controls were recruited. All participants underwent the motor imagery task-related fMRI scans, and additional motor execution scans were performed only on healthy controls. First, we compared the brain-activation patterns between motor imagery and motor execution in healthy controls. Then, we compared the brain activation of motor imagery between the 2 groups and compared the brain activation of motor imagery in pediatric patients with complete spinal cord injury and that of motor execution in healthy controls. RESULTS In healthy controls, compared with motor execution, motor imagery showed increased activation in the left inferior parietal lobule and decreased activation in the left supplementary motor area, paracentral lobule, middle cingulate cortex, and right insula. In addition, our results revealed that the 2 groups both activated the bilateral supplementary motor area, middle cingulate cortex and left inferior parietal lobule, and supramarginal gyrus during motor imagery. Compared with healthy controls, higher activation in the bilateral paracentral lobule, supplementary motor area, putamen, and cerebellar lobules III-V was detected in pediatric complete spinal cord injury during motor imagery, and the activation of these regions was even higher than that of healthy controls during motor execution. CONCLUSIONS Our study demonstrated that part of the motor imagery network was functionally preserved in pediatric complete spinal cord injury and could be activated through motor imagery. In addition, higher-level activation in sensorimotor-related regions was also found in pediatric complete spinal cord injury during motor imagery. Our findings may provide a theoretic basis for the application of motor imagery training in pediatric complete spinal cord injury.
Collapse
Affiliation(s)
- L Wang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - W M Zheng
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - T F Liang
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - Y H Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B N Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - X Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - Q Chen
- Department of Radiology (Q.C.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - X J Li
- Department of Radiology (X.J.L.), China Rehabilitation Research Center, Beijing, China
| | - J Lu
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B W Li
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - N Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| |
Collapse
|
3
|
Do any physiotherapy interventions increase spinal cord independence measure or functional independence measure scores in people with spinal cord injuries? A systematic review. Spinal Cord 2021; 59:705-715. [PMID: 34099880 DOI: 10.1038/s41393-021-00638-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To determine whether any physiotherapy interventions increase Spinal Cord Independence Measure or Functional Independence Measure scores (SCIM/FIM) in people with spinal cord injury (SCI), with the overall aim of determining whether any physiotherapy interventions need to be controlled for in studies examining the effects of novel experimental interventions on SCIM/FIM. METHODS A systematic review was conducted to identify all randomised controlled trials examining the effect of any physiotherapy intervention on SCIM/FIM in people with SCI. PEDro scores were used to rate risk of bias. The results of similar trials and comparisons were pooled using meta-analyses. RESULTS Thirty-three trials met the inclusion criteria but only 27 provided useable data. The median (IQR) PEDro score was 6.0 (4.0-7.0). A meta-analysis of four trials comparing robotic gait training with overground gait training that used a combination of FIM/SCIM indicated a pooled mean (95% CI) between-group difference of 0.38 standardised mean difference (SMD; 95% CI, 0.08-0.67). A second meta-analysis of two trials comparing upper limb training with and without functional electrical stimulation using FIM indicated a pooled (95% CI) between-group difference of 1.31 SMD (0.62-1.99). Another six trials examining a range of different physiotherapy interventions reported a statistically significant mean between-group difference on SCIM/FIM. CONCLUSION There is low-quality evidence to indicate that a small number of physiotherapy interventions increase SCIM/FIM. The importance of controlling for all physiotherapy interventions in studies examining the effects of novel experimental interventions on SCIM/FIM is as yet unclear.
Collapse
|
4
|
Goble MSL, Raison N, Mekhaimar A, Dasgupta P, Ahmed K. Adapting Motor Imagery Training Protocols to Surgical Education: A Systematic Review and Meta-Analysis. Surg Innov 2021; 28:329-351. [PMID: 33710912 PMCID: PMC8264649 DOI: 10.1177/1553350621990480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. Motor imagery (MI) is widely used to improve technical skills in sports and has been proven to be effective in neurorehabilitation and surgical education. This review aims to identify the key characteristics of MI protocols for implementation into surgical curricula. Design. This study is a systematic review and meta-analysis. PubMed, MEDLINE, Embase and PsycINFO databases were systematically searched. The primary outcome was the impact of MI training on measured outcomes, and secondary outcomes were study population, MI intervention characteristics, study primary outcome measure and subject rating of MI ability (systematic review registration: PROSPERO CRD42019121895). Results. 456 records were screened, 60 full texts randomising 2251 participants were reviewed and 39 studies were included in meta-analysis. MI was associated with improved outcome in 35/60 studies, and pooled analysis also showed improved outcome on all studies with a standardised mean difference of .39 (95% CI: .12, .67, P = .005). In studies where MI groups showed improved outcomes, the median duration of training was 24 days (mode 42 days), and the median duration of each individual MI session was 30 minutes (range <1 minute-120 minutes). Conclusions. MI training protocols for use in surgical education could have the following characteristics: MI training delivered in parallel to existing surgical training, in a flexible format; inclusion of a brief period of relaxation, followed by several sets of repetitions of MI and a refocusing period. This is a step towards the development of a surgical MI training programme, as a low-cost, low-risk tool to enhance practical skills.
Collapse
Affiliation(s)
- Mary S L Goble
- MRC Centre for Transplantation, Guy's Hospital, 4616King's College London, UK
| | - Nicholas Raison
- MRC Centre for Transplantation, Guy's Hospital, 4616King's College London, UK
| | - Ayah Mekhaimar
- MRC Centre for Transplantation, Guy's Hospital, 4616King's College London, UK
| | - Prokar Dasgupta
- MRC Centre for Transplantation, Guy's Hospital, 4616King's College London, UK.,Department of Urology, 4616Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK
| | - Kamran Ahmed
- MRC Centre for Transplantation, Guy's Hospital, 4616King's College London, UK.,Department of Urology, 4616Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK
| |
Collapse
|
5
|
Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. J Neurol Phys Ther 2021; 44:49-100. [PMID: 31834165 DOI: 10.1097/npt.0000000000000303] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Individuals with acute-onset central nervous system (CNS) injury, including stroke, motor incomplete spinal cord injury, or traumatic brain injury, often experience lasting locomotor deficits, as quantified by decreases in gait speed and distance walked over a specific duration (timed distance). The goal of the present clinical practice guideline was to delineate the relative efficacy of various interventions to improve walking speed and timed distance in ambulatory individuals greater than 6 months following these specific diagnoses. METHODS A systematic review of the literature published between 1995 and 2016 was performed in 4 databases for randomized controlled clinical trials focused on these specific patient populations, at least 6 months postinjury and with specific outcomes of walking speed and timed distance. For all studies, specific parameters of training interventions including frequency, intensity, time, and type were detailed as possible. Recommendations were determined on the basis of the strength of the evidence and the potential harm, risks, or costs of providing a specific training paradigm, particularly when another intervention may be available and can provide greater benefit. RESULTS Strong evidence indicates that clinicians should offer walking training at moderate to high intensities or virtual reality-based training to ambulatory individuals greater than 6 months following acute-onset CNS injury to improve walking speed or distance. In contrast, weak evidence suggests that strength training, circuit (ie, combined) training or cycling training at moderate to high intensities, and virtual reality-based balance training may improve walking speed and distance in these patient groups. Finally, strong evidence suggests that body weight-supported treadmill training, robotic-assisted training, or sitting/standing balance training without virtual reality should not be performed to improve walking speed or distance in ambulatory individuals greater than 6 months following acute-onset CNS injury to improve walking speed or distance. DISCUSSION The collective findings suggest that large amounts of task-specific (ie, locomotor) practice may be critical for improvements in walking function, although only at higher cardiovascular intensities or with augmented feedback to increase patient's engagement. Lower-intensity walking interventions or impairment-based training strategies demonstrated equivocal or limited efficacy. LIMITATIONS As walking speed and distance were primary outcomes, the research participants included in the studies walked without substantial physical assistance. This guideline may not apply to patients with limited ambulatory function, where provision of walking training may require substantial physical assistance. SUMMARY The guideline suggests that task-specific walking training should be performed to improve walking speed and distance in those with acute-onset CNS injury although only at higher intensities or with augmented feedback. Future studies should clarify the potential utility of specific training parameters that lead to improved walking speed and distance in these populations in both chronic and subacute stages following injury. DISCLAIMER These recommendations are intended as a guide for clinicians to optimize rehabilitation outcomes for persons with chronic stroke, incomplete spinal cord injury, and traumatic brain injury to improve walking speed and distance.
Collapse
|
6
|
Opsommer E, Chevalley O, Korogod N. Motor imagery for pain and motor function after spinal cord injury: a systematic review. Spinal Cord 2019; 58:262-274. [PMID: 31836873 DOI: 10.1038/s41393-019-0390-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To evaluate the therapeutic benefits of motor imagery (MI) for the people with spinal cord injury (SCI). SETTING International. METHODS We searched electronic bibliographic databases, trial registers, and relevant reference lists. The review included experimental and quasi-experimental study designs as well as observational studies. For the critical appraisal of the 18 studies retrieved (three RCT, seven quasi-RCT, eight observational), we used instruments from the Joanna Briggs Institute. The primary outcome measure was pain. Secondary outcome measures included motor function and neurophysiological parameters. Adverse effects were extracted if reported in the included studies. Because of data heterogeneity, only a qualitative synthesis is offered. RESULTS The included studies involved 282 patients. In most, results were an improvement in motor function and decreased pain; however, some reported no effect or an increase in pain. Although protocols of MI intervention were heterogeneous, sessions of 8-20 min were used for pain treatments, and of 30-60 min were used for motor function improvement. Neurophysiological measurements showed changes in brain region activation and excitability imposed by SCI, which were partially recovered by MI interventions. No serious adverse effects were reported. CONCLUSIONS High heterogeneity in the SCI population, MI interventions, and outcomes measured makes it difficult to judge the therapeutic effects and best MI intervention protocol, especially for people with SCI with neuropathic pain. Further clinical trials evaluating MI intervention as adjunct therapy for pain in SCI patients are warranted.
Collapse
Affiliation(s)
- Emmanuelle Opsommer
- School of Health Sciences (HESAV) - University of Applied Sciences and Arts Western Switzerland (HES-SO), Avenue de Beaumont 21, 1011, Lausanne, Switzerland.
| | - Odile Chevalley
- School of Health Sciences (HESAV) - University of Applied Sciences and Arts Western Switzerland (HES-SO), Avenue de Beaumont 21, 1011, Lausanne, Switzerland
| | - Natalya Korogod
- School of Health Sciences (HESAV) - University of Applied Sciences and Arts Western Switzerland (HES-SO), Avenue de Beaumont 21, 1011, Lausanne, Switzerland
| |
Collapse
|
7
|
Xi J, Luo X, Wang Y, Li J, Guo L, Wu G, Li Q. Tetrahydrocurcumin protects against spinal cord injury and inhibits the oxidative stress response by regulating FOXO4 in model rats. Exp Ther Med 2019; 18:3681-3687. [PMID: 31602247 DOI: 10.3892/etm.2019.7974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
It has been reported that tetrahydrocurcumin has hypoglycemic, hypolipidemic, anti-metastasis, anticancer and anti-depressant pharmacological effects, and its antioxidative, hypoglycemic and hypolipidemic properties are better than those of curcumin. The present study assessed whether tetrahydrocurcumin exerts a neuroprotective effect against spinal cord injury (SCI) and investigated the underlying mechanisms. In a rat model of SCI, tetrahydrocurcumin enhanced the average Basso-Beattie-Bresnahan scores, inhibited water accumulation in the spinal cord and decreased inflammatory factors. Furthermore, oxidative stress and apoptosis (caspase-3 activity and B-cell lymphoma 2-associated X protein levels) were also suppressed in SCI rats treated with tetrahydrocurcumin. Tetrahydrocurcumin effectively decreased the gene expression of matrix metalloproteinase-3 and -13, as well as cyclooxygenase-2, promoted the phosphorylation of Akt and enhanced the protein expression of forkhead box (FOX)O4 in SCI rats. The present study delineates that tetrahydrocurcumin protects against SCI and inhibits the oxidative stress response by regulating the FOXO4 in SCI model rats.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Yipeng Wang
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinglong Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangseng Wu
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qingui Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
8
|
Sandler EB, Roach KE, Field-Fote EC. Dose-Response Outcomes Associated with Different Forms of Locomotor Training in Persons with Chronic Motor-Incomplete Spinal Cord Injury. J Neurotrauma 2017; 34:1903-1908. [PMID: 27901413 DOI: 10.1089/neu.2016.4555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Outcomes of training are thought to be related to the amount of training (training dose). Although various approaches to locomotor training have been used to improve walking function in persons with spinal cord injury (SCI), little is known about the relationship between dose of locomotor training and walking outcomes. This secondary analysis aimed to identify the relationship between training dose and improvement in walking distance and speed associated with locomotor training in participants with chronic motor-incomplete spinal cord injury (MISCI). We compared the dose-response relationships associated with each of four different locomotor training approaches. Participants were randomized to either: treadmill-based training with manual assistance (TM = 17), treadmill-based training with stimulation (TS = 18), overground training with stimulation (OG = 15), and treadmill-based training with locomotor robotic device assistance (LR = 14). Subjects trained 5 days/week for 12 weeks, with a target of 60 training sessions. The distance-dose and time-dose were calculated based on the total distance and total time, respectively, participants engaged in walking over all sessions combined. Primary outcome measures included walking distance (traversed in 2 min) and walking speed (over 10 m). Only OG training showed a good correlation between distance-dose and change in walking distance and speed walked over ground (r = 0.61, p = 0.02; r = 0.62, p = 0.01). None of the treadmill-based training approaches were associated with significant correlations between training dose and improvement of functional walking outcome. The findings suggest that greater distance achieved over the course of OG training is associated with better walking outcomes in the studied population. Further investigation to identify the essential elements that determine outcomes would be valuable for guiding rehabilitation.
Collapse
Affiliation(s)
- Evan B Sandler
- 1 Crawford Research Institute , Shepherd Center, Atlanta, Georgia
| | - Kathryn E Roach
- 2 Department of Physical Therapy, Miller School of Medicine, University of Miami , Miami, Florida
| | - Edelle C Field-Fote
- 1 Crawford Research Institute , Shepherd Center, Atlanta, Georgia .,3 Department of Rehabilitation Medicine, School of Medicine, Emory University , Atlanta, Georgia .,4 The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| |
Collapse
|
9
|
Roosink M, Robitaille N, Jackson PL, Bouyer LJ, Mercier C. Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study. Restor Neurol Neurosci 2016; 34:227-35. [PMID: 26890097 PMCID: PMC4927914 DOI: 10.3233/rnn-150563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Motor imagery can improve motor function and reduce pain. This is relevant to individuals with spinal cord injury (SCI) in whom motor dysfunction and neuropathic pain are prevalent. However, therapy efficacy could be dependent on motor imagery ability, and a clear understanding of how motor imagery might be facilitated is currently lacking. Thus, the aim of the present study was to assess the immediate effects of interactive virtual feedback on motor imagery performance after SCI. Methods: Nine individuals with a traumatic SCI participated in the experiment. Motor imagery tasks consisted of forward (i.e. simpler) and backward (i.e. more complex) walking while receiving interactive versus static virtual feedback. Motor imagery performance (vividness, effort and speed), neuropathic pain intensity and feasibility (immersion, distraction, side-effects) were assessed. Results: During interactive feedback trials, motor imagery vividness and speed were significantly higher and effort was significantly lower as compared static feedback trials. No change in neuropathic pain was observed. Adverse effects were minor, and immersion was reported to be good. Conclusions: This exploratory study showed that interactive virtual walking was feasible and facilitated motor imagery performance. The response to motor imagery interventions after SCI might be improved by using interactive virtual feedback.
Collapse
Affiliation(s)
- Meyke Roosink
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Québec, QC, Canada
| | - Nicolas Robitaille
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Québec, QC, Canada
| | - Philip L Jackson
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Québec, QC, Canada.,School of Psychology, Laval University, Québec, QC, Canada
| | - Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Québec, QC, Canada.,Department of Rehabilitation, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Québec, QC, Canada.,Department of Rehabilitation, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
10
|
Effects of Overground Locomotor Training on Walking Performance in Chronic Cervical Motor Incomplete Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil 2016; 98:1119-1125. [PMID: 27965006 DOI: 10.1016/j.apmr.2016.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine the effects of a novel overground locomotor training program on walking performance in people with chronic cervical motor incomplete spinal cord injury (iSCI). DESIGN Before-after pilot study. SETTING Human performance research laboratory. PARTICIPANTS Adults (N=6, age >18y) with chronic cervical iSCI with American Spinal Injury Association Impairment Scale grades C and D. INTERVENTIONS Overground locomotor training included two 90-minute sessions per week for 12 to 15 weeks. Training sessions alternated between uniplanar and multiplanar stepping patterns. Each session was comprised of 5 segments: joint mobility, volitional muscle activation, task isolation, task integration, and activity rehearsal. MAIN OUTCOME MEASURES Overground walking speed, oxygen consumption (V˙o2), and carbon dioxide production (V˙co2). RESULTS Overground locomotor training increased overground walking speed (.36±.20 vs .51±.24 m/s, P<.001, d=.68). Significant decreases in V˙o2 (6.6±1.3 vs 5.7±1.4mL·kg·min, P=.038, d=.67) and V˙co2 (753.1±125.5 vs 670.7±120.3mL/min, P=.036, d=.67) during self-selected constant work rate treadmill walking were also noted after training. CONCLUSIONS The overground locomotor training program used in this pilot study is feasible and improved both overground walking speed and walking economy in a small sample of people with chronic cervical iSCI. Future studies are necessary to establish the efficacy of this overground locomotor training program and to differentiate among potential mechanisms contributing to enhanced walking performance in people with iSCI after overground locomotor training.
Collapse
|
11
|
Kumprou M, Amatachaya P, Sooknuan T, Thaweewannakij T, Mato L, Amatachaya S. Do ambulatory patients with spinal cord injury walk symmetrically? Spinal Cord 2016; 55:204-207. [DOI: 10.1038/sc.2016.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/17/2016] [Accepted: 09/24/2016] [Indexed: 11/09/2022]
|
12
|
Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. BIOSYSTEMS & BIOROBOTICS 2016. [DOI: 10.1007/978-3-319-24901-8_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Integrating Mental Practice with Task-specific Training and Behavioral Supports in Poststroke Rehabilitation. Phys Med Rehabil Clin N Am 2015; 26:715-27. [DOI: 10.1016/j.pmr.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|