1
|
Liu G, Chia CH, Jia HJ, Chen JX, Wang WN, Tian S, Cao Y, Wu JF, Wu Y, Yang CW. Taking Food to Mouth: Correlation Between Repetitive Movement and Upper Limb Flexion Synergy After Stroke. NeuroRehabilitation 2025; 56:384-393. [PMID: 40318665 DOI: 10.1177/10538135251315378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundPathological upper-limb synergistic movement is a prevalent symptom of post-stroke motor dysfunction and pose a significant challenge in the rehabilitation of hemiplegia. However, the underlying mechanisms remain elusive, hindering the development of effective therapeutic strategies.ObjectiveThis study aims to explore the mechanisms underlying pathological synergic movements post-stroke by examining the interrelationship between motor modules associated with upper limb flexion synergy and the repetitive action of "taking food to the mouth."MethodsSurface electromyography (sEMG) was employed to capture the EMG signals of normal elbow flexion, the act of "taking food to the mouth," and post-stroke upper limb flexion synergy. Non-negative matrix factorization (NMF) was employed to compare and analyze the corresponding modular and coefficient matrices derived from these three motor tasks.ResultsThe modular matrix associated with flexion synergy exhibited the most significant correlation with the "taking food to the mouth" task, whereas the coefficient matrix shared the lowest correlation.ConclusionUpper limb flexion synergy after stroke may be related to the activation of the highly excitatory motor module formed by previously repeated movement of "taking food to mouth".
Collapse
Affiliation(s)
- Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chin-Hsuan Chia
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Hai-Jun Jia
- The Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, China
| | - Jia-Xi Chen
- The Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, China
| | - Wei-Ning Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Cao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun-Fa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Cui-Wei Yang
- The Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, China
| |
Collapse
|
2
|
Peng RHT, Mulyana BE, Darvish MR, Sung J, Yang Y. Implications of Hemispheric Shift of Sensory Feedback during Post-stroke Motor Control on Personalized Stroke Rehabilitation. CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION V : PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NEUROREHABILITATION (ICNR 2024), NOVEMBER 5-8, 2024, LA GRANJA, SPAIN. VOLUME 2 2024; 32:540-544. [PMID: 39816497 PMCID: PMC11734431 DOI: 10.1007/978-3-031-77584-0_106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Sensory feedback is crucial for motor control as it establishes the internal representation of motion. This study investigates changes in sensory feedback in hemiparetic stroke by analyzing the laterality index (LI) of somatosensory evoked potentials (SEPs) during movements of the paretic arm, focusing on a shift from the lesioned to the contralesional hemisphere. Three chronic stroke participants performed isometric lifts of their paretic arms at two different levels of their maximum voluntary contraction while receiving tactile finger stimulation. We found that the hemispheric shift of somatosensory processing enhanced with higher level arm lifting on N100, which is the component related to sensory feedback. This result may provide a reference for the future development of personalized neuromuscular electrical stimulation therapy to include sensory components in motor rehabilitation post-stroke.
Collapse
Affiliation(s)
- Rita Huan-Ting Peng
- University of Illinois Urbana-Champaign, Urbana, IL, USA; Carle Foundation Hospital, Urbana, IL, USA
| | - Beni E Mulyana
- University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Joohwan Sung
- University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan Yang
- University of Illinois Urbana-Champaign, Urbana, IL, USA; Carle Foundation Hospital, Urbana, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Williamson JN, Mulyana B, Peng RHT, Jain S, Hassaneen W, Miranpuri A, Yang Y. How the Somatosensory System Adapts to the Motor Change in Stroke: A Hemispheric Shift? Med Hypotheses 2024; 192:111487. [PMID: 39525858 PMCID: PMC11542668 DOI: 10.1016/j.mehy.2024.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract and a maladaptive increase in indirect contralesional motor pathways. How the somatosensory system adapts to the change in the use of motor pathways and the role of adaptive sensory feedback to the abnormal movement control of the paretic arm remains largely unknown. We hypothesize that following a unilateral stroke, there is an adaptive hemispheric shift of somatosensory processing toward the contralesional sensorimotor areas to provide sensory feedback support to the contralesional indirect motor pathways. This research could provide new insights related to somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective. Understanding how somatosensory information shifts may provide a target for a novel method to therapeutically prevent and mitigate the emergence and expression of upper limb motor impairments, following a stroke.
Collapse
Affiliation(s)
- Jordan N. Williamson
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
| | - Beni Mulyana
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Rita Huan-Ting Peng
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Sanjiv Jain
- Carle Foundation Hospital, Dr. Elizabeth Hosick Rehabilitation Center, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Yuan Yang
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA
| |
Collapse
|
4
|
Sinha N, Dewald JPA, Yang Y. Perturbation-induced electromyographic activity is predictive of flexion synergy expression and a sensitive measure of post-stroke motor impairment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039166 PMCID: PMC11883170 DOI: 10.1109/embc53108.2024.10781597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The goal of this study was to explore whether the stretch reflex-induced muscle activity is correlated with the expression of the flexion synergy and, therefore, can serve as a quantitative indicator of post-stroke motor impairment. Eleven stroke participants stroke were recruited for this study. Their forearm was connected to a robotic device that applied continuous position perturbations to the paretic elbow joint. The magnitude of EMG activity of the spastic biceps brachii was measured. The expression of the flexion synergy was determined using the increase of synergistic elbow flexion torque when subjects were gradually lifting their paretic arm with two derived measures: normalized flexion synergy area (NFSA) and the mean slope of the expression of flexion synergy (ΔFS). Significant positive correlations were found between spastic biceps EMG (predictor variable) and the flexion synergy expression (response variables), i.e., NFSA (ρ = 0.89, p < 0.001) and ΔFS (ρ = 0.73, p = 0.01). This result indicates that the perturbation-induced EMG activity can serve as a sensitive indicator of post-stroke motor impairments related to the expression of spasticity and flexion synergy and demonstrates that these motor impairments may be mechanistically linked.
Collapse
|
5
|
Castellote JM, Kofler M, Mayr A. The benefit of knowledge: postural response modulation by foreknowledge of equilibrium perturbation in an upper limb task. Eur J Appl Physiol 2024; 124:975-991. [PMID: 37755580 PMCID: PMC10879248 DOI: 10.1007/s00421-023-05323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
For whole-body sway patterns, a compound motor response following an external stimulus may comprise reflexes, postural adjustments (anticipatory or compensatory), and voluntary muscular activity. Responses to equilibrium destabilization may depend on both motor set and a subject`s expectation of the disturbing stimulus. To disentangle these influences on lower limb responses, we studied a model in which subjects (n = 14) were suspended in the air, without foot support, and performed a fast unilateral wrist extension (WE) in response to a passive knee flexion (KF) delivered by a robot. To characterize the responses, electromyographic activity of rectus femoris and reactive leg torque was obtained bilaterally in a series of trials, with or without the requirement of WE (motor set), and/or beforehand information about the upcoming velocity of KF (subject`s expectation). Some fast-velocity trials resulted in StartReact responses, which were used to subclassify leg responses. When subjects were uninformed about the upcoming KF, large rectus femoris responses concurred with a postural reaction in conditions without motor task, and with both postural reaction and postural adjustment when WE was required. WE in response to a low-volume acoustic signal elicited no postural adjustments. When subjects were informed about KF velocity and had to perform WE, large rectus femoris responses corresponded to anticipatory postural adjustment rather than postural reaction. In conclusion, when subjects are suspended in the air and have to respond with WE, the prepared motor set includes anticipatory postural adjustments if KF velocity is known, and additional postural reactions if KF velocity is unknown.
Collapse
Affiliation(s)
- Juan M Castellote
- Radiology, Rehabilitation and Physiotherapy Department, Faculty of Medicine, Universidad Complutense, Madrid, Spain.
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Andreas Mayr
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
6
|
Dewald HA, Yao J, Dewald JPA, Nader A, Kirsch RF. Peripheral nerve blocks of wrist and finger flexors can increase hand opening in chronic hemiparetic stroke. Front Neurol 2024; 15:1284780. [PMID: 38456150 PMCID: PMC10919218 DOI: 10.3389/fneur.2024.1284780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Hand opening is reduced by abnormal wrist and finger flexor activity in many individuals with stroke. This flexor activity also limits hand opening produced by functional electrical stimulation (FES) of finger and wrist extensor muscles. Recent advances in electrical nerve block technologies have the potential to mitigate this abnormal flexor behavior, but the actual impact of nerve block on hand opening in stroke has not yet been investigated. Methods In this study, we applied the local anesthetic ropivacaine to the median and ulnar nerve to induce a complete motor block in 9 individuals with stroke and observed the impact of this block on hand opening as measured by hand pentagonal area. Volitional hand opening and FES-driven hand opening were measured, both while the arm was fully supported on a haptic table (Unloaded) and while lifting against gravity (Loaded). Linear mixed effect regression (LMER) modeling was used to determine the effect of Block. Results The ropivacaine block allowed increased hand opening, both volitional and FES-driven, and for both unloaded and loaded conditions. Notably, only the FES-driven and Loaded condition's improvement in hand opening with the block was statistically significant. Hand opening in the FES and Loaded condition improved following nerve block by nearly 20%. Conclusion Our results suggest that many individuals with stroke would see improved hand-opening with wrist and finger flexor activity curtailed by nerve block, especially when FES is used to drive the typically paretic finger and wrist extensor muscles. Such a nerve block (potentially produced by aforementioned emerging electrical nerve block technologies) could thus significantly address prior observed shortcomings of FES interventions for individuals with stroke.
Collapse
Affiliation(s)
- Hendrik A. Dewald
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Antoun Nader
- Department of Anesthesiology, Northwestern University, Chicago, IL, United States
| | - Robert F. Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Cleveland FES Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
7
|
Lee IJ, Hu YH, Hsiao PC, Yang SY, Lin HT, Chen YC, Lin BS. AI-Based Automatic System for Assessing Upper-Limb Spasticity of Patients With Stroke Through Voluntary Movement. IEEE J Biomed Health Inform 2024; 28:742-752. [PMID: 36367914 DOI: 10.1109/jbhi.2022.3221639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Spasticity is a common complication for patients with stroke, but only few studies investigate the relation between spasticity and voluntary movement. This study proposed a novel automatic system for assessing the severity of spasticity (SS) of four upper-limb joints, including the elbow, wrist, thumb, and fingers, through voluntary movements. A wearable system which combined 19 inertial measurement units and a pressure ball was proposed to collect the kinematic and force information when the participants perform four tasks, namely cone stacking (CS), fast flexion and extension (FFE), slow ball squeezing (SBS), and fast ball squeezing (FBS). Several time and frequency domain features were extracted from the collected data, and two feature selection approaches based on recursive feature elimination were adopted to select the most influential features. The selected features were input into five machine learning techniques for assessing the SS for each joint. The results indicated that using CS task to assess the SS of elbow and fingers and using FBS task to assess the SS of thumb and wrist can reach the highest weighted-average F1-score. Furthermore, the study also concluded that FBS is the optimal task for assessing all the four upper-limb joints. The overall result shown that the proposed automatic system can assess four upper-limb joints through voluntary movements accurately, which is a breakthrough of finding the relation between spasticity and voluntary movement.
Collapse
|
8
|
Park JH, Shin JH, Lee H, Roh J, Park HS. Relevance of Upper Limb Muscle Synergies to Dynamic Force Generation: Perspectives on Rehabilitation of Impaired Intermuscular Coordination in Stroke. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4851-4861. [PMID: 38015664 DOI: 10.1109/tnsre.2023.3337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study investigated the impact of stroke on the control of upper limb endpoint force during isokinetic exercise, a dynamic force-generating task, and its association with stroke-affected muscle synergies. Three-dimensional upper limb endpoint force and electromyography of shoulder and elbow muscles were collected from sixteen chronic stroke survivors and eight neurologically intact adults. Participants were instructed to control the endpoint force direction during three-dimensional isokinetic upper limb movements. The endpoint force control performance was quantitatively evaluated in terms of the coupling between forces in orthogonal directions and the complexity of the endpoint force. Upper limb muscle synergies were compared between participants with varying levels of endpoint force coupling. The stroke survivors generating greater force abnormality than the others exhibited interdependent activation profiles of shoulder- and elbow-related muscle synergies to a greater extent. Based on the relevance of synergy activation to endpoint force control, this study proposes isokinetic training to correct the abnormal synergy activation patterns post-stroke. Several ideas for implementing effective training for stroke-affected synergy activation are discussed.
Collapse
|
9
|
Plaisier TAM, Acosta AM, Dewald JPA. A Method for Quantification of Stretch Reflex Excitability During Ballistic Reaching. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2698-2704. [PMID: 37285243 PMCID: PMC10327419 DOI: 10.1109/tnsre.2023.3283861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stretch reflexes are crucial for performing accurate movements and providing rapid corrections for unpredictable perturbations. Stretch reflexes are modulated by supraspinal structures via corticofugal pathways. Neural activity in these structures is difficult to observe directly, but the characterization of reflex excitability during volitional movement can be used to study how these structures modulate reflexes and how neurological injuries impact this control, such as in spasticity after stroke. We have developed a novel protocol to quantify stretch reflex excitability during ballistic reaching. This novel method was implemented using a custom haptic device (NACT-3D) capable of applying high-velocity (270 °/s) joint perturbations in the plane of the arm while participants performed 3D reaching tasks in a large workspace. We assessed the protocol on four participants with chronic hemiparetic stroke and two control participants. Participants reached ballistically from a near to a far target, with elbow extension perturbations applied in random catch trials. Perturbations were applied before movement, during the early phase of movement, or near peak movement velocity. Preliminary results show that stretch reflexes were elicited in the stroke group in the biceps muscle during reaching, as measured by electromyographic (EMG) activity both before (pre-motion phase) and during (early motion phase) movement. Reflexive EMG was also seen in the anterior deltoid and pectoralis major in the pre-motion phase. In the control group, no reflexive EMG was seen, as expected. This newly developed methodology allows the study of stretch reflex modulation in new ways by combining multijoint movements with haptic environments and high-velocity perturbations.
Collapse
|
10
|
Cortical Reorganization of Early Somatosensory Processing in Hemiparetic Stroke. J Clin Med 2022; 11:jcm11216449. [PMID: 36362680 PMCID: PMC9654771 DOI: 10.3390/jcm11216449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The cortical motor system can be reorganized following a stroke, with increased recruitment of the contralesional hemisphere. However, it is unknown whether a similar hemispheric shift occurs in the somatosensory system to adapt to this motor change, and whether this is related to movement impairments. This proof-of-concept study assessed somatosensory evoked potentials (SEPs), P50 and N100, in hemiparetic stroke participants and age-matched controls using high-density electroencephalograph (EEG) recordings during tactile finger stimulation. The laterality index was calculated to determine the hemispheric dominance of the SEP and re-confirmed with source localization. The study found that latencies of P50 and N100 were significantly delayed in stroke brains when stimulating the paretic hand. The amplitude of P50 in the contralateral (to stimulated hand) hemisphere was negatively correlated with the Fügl-Meyer upper extremity motor score in stroke. Bilateral cortical responses were detected in stroke, while only contralateral cortical responses were shown in controls, resulting in a significant difference in the laterality index. These results suggested that somatosensory reorganization after stroke involves increased recruitment of ipsilateral cortical regions, especially for the N100 SEP component. This reorganization delays the latency of somatosensory processing after a stroke. This research provided new insights related to the somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective.
Collapse
|
11
|
van der Velden LL, Onneweer B, Haarman CJW, Benner JL, Roebroeck ME, Ribbers GM, Selles RW. Development of a single device to quantify motor impairments of the elbow: proof of concept. J Neuroeng Rehabil 2022; 19:77. [PMID: 35864498 PMCID: PMC9306071 DOI: 10.1186/s12984-022-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background For patients with post-stroke upper limb impairments, the currently available clinical measurement instruments are inadequate for reliable quantification of multiple impairments, such as muscle weakness, abnormal synergy, changes in elastic joint properties and spasticity. Robotic devices to date have successfully achieved precise and accurate quantification but are often limited to the measurement of one or two impairments. Our primary aim is to develop a robotic device that can effectively quantify four main motor impairments of the elbow. Methods The robotic device, Shoulder Elbow Perturbator, is a one-degree-of-freedom device that can simultaneously manipulate the elbow joint and support the (partial) weight of the human arm. Upper limb impairments of the elbow were quantified based on four experiments on the paretic arm in ten stroke patients (mean age 65 ± 10 yrs, 9 males, post-stroke) and the non-dominant arm in 20 healthy controls (mean age 65 ± 14 yrs, 6 males). The maximum strength of elbow flexor and elbow extensor muscles was measured isometrically at 90-degree elbow flexion. The maximal active extension angle of the elbow was measured under different arm weight support levels to assess abnormal synergy. Torque resistance was analyzed during a slow (6°/s) passive elbow rotation, where the elbow moved from the maximal flexion to maximal extension angle and back, to assess elastic joint properties. The torque profile was evaluated during fast (100°/s) passive extension rotation of the elbow to estimate spasticity. Results The ten chronic stroke patients successfully completed the measurement protocol. The results showed impairment values outside the 10th and 90th percentile reference intervals of healthy controls. Individual patient profiles were determined and illustrated in a radar figure, to support clinicians in developing targeted treatment plans. Conclusion The Shoulder Elbow Perturbator can effectively quantify the four most important impairments of the elbow in stroke patients and distinguish impairment scores of patients from healthy controls. These results are promising for objective and complete quantification of motor impairments of the elbow and monitoring patient prognosis. Our newly developed Shoulder Elbow Perturbator can therefore in the future be employed to evaluate treatment effects by comparing pre- and post-treatment assessments. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-01050-2.
Collapse
Affiliation(s)
- Levinia Lara van der Velden
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. .,Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands.
| | - Bram Onneweer
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| | | | - Joyce Lisanne Benner
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marij Eugenie Roebroeck
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| | - Gerard Maria Ribbers
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| | - Ruud Willem Selles
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Patterson JR, Dewald JPA, Drogos JM, Gurari N. Impact of Voluntary Muscle Activation on Stretch Reflex Excitability in Individuals With Hemiparetic Stroke. Front Neurol 2022; 13:764650. [PMID: 35359658 PMCID: PMC8964046 DOI: 10.3389/fneur.2022.764650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Objective To characterize how, following a stretch-induced attenuation, volitional muscle activation impacts stretch reflex activity in individuals with stroke. Methods A robotic device rotated the paretic elbow of individuals with hemiparetic stroke from 70° to 150°, and then back to 70° elbow flexion at an angular speed of 120°/s. This stretching sequence was repeated 20 times. Subsequently, participants volitionally activated their elbow musculature or rested. Finally, the stretching sequence was repeated another 20 times. The flexors' stretch reflex activity was quantified as the net torque measured at 135°. Results Data from 15 participants indicated that the stretching sequence attenuated the flexion torque (p < 0.001) and resting sustained the attenuation (p = 1.000). Contrastingly, based on data from 14 participants, voluntary muscle activation increased the flexion torque (p < 0.001) to an initial pre-stretch torque magnitude (p = 1.000). Conclusions Stretch reflex attenuation induced by repeated fast stretches may be nullified when individuals post-stroke volitionally activate their muscles. In contrast, resting may enable a sustained reflex attenuation if the individual remains relaxed. Significance Stretching is commonly implemented to reduce hyperactive stretch reflexes following a stroke. These findings suggest that stretch reflex accommodation arising from repeated fast stretching may be reversed once an individual volitionally moves their paretic arm.
Collapse
Affiliation(s)
- Jacqueline R. Patterson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
13
|
Binder-Markey BI, Murray WM, Dewald JPA. Passive Properties of the Wrist and Fingers Following Chronic Hemiparetic Stroke: Interlimb Comparisons in Persons With and Without a Clinical Treatment History That Includes Botulinum Neurotoxin. Front Neurol 2021; 12:687624. [PMID: 34447346 PMCID: PMC8383209 DOI: 10.3389/fneur.2021.687624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neural impairments that follow hemiparetic stroke may negatively affect passive muscle properties, further limiting recovery. However, factors such as hypertonia, spasticity, and botulinum neurotoxin (BoNT), a common clinical intervention, confound our understanding of muscle properties in chronic stroke. Objective: To determine if muscle passive biomechanical properties are different following prolonged, stroke-induced, altered muscle activation and disuse. Methods: Torques about the metacarpophalangeal and wrist joints were measured in different joint postures in both limbs of participants with hemiparetic stroke. First, we evaluated 27 participants with no history of BoNT; hand impairments ranged from mild to severe. Subsequently, seven participants with a history of BoNT injections were evaluated. To mitigate muscle hypertonia, torques were quantified after an extensive stretching protocol and under conditions that encouraged participants to sleep. EMGs were monitored throughout data collection. Results: Among participants who never received BoNT, no significant differences in passive torques between limbs were observed. Among participants who previously received BoNT injections, passive flexion torques about their paretic wrist and finger joints were larger than their non-paretic limb (average interlimb differences = +42.0 ± 7.6SEM Ncm, +26.9 ± 3.9SEM Ncm, respectively), and the range of motion for passive finger extension was significantly smaller (average interlimb difference = -36.3° ± 4.5°SEM; degrees). Conclusion: Our results suggest that neural impairments that follow chronic, hemiparetic stroke do not lead to passive mechanical changes within the wrist and finger muscles. Rather, consistent with animal studies, the data points to potential adverse effects of BoNT on passive muscle properties post-stroke, which warrant further consideration.
Collapse
Affiliation(s)
- Benjamin I Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States.,School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States.,Shirley Ryan Ability Lab, Chicago, IL, United States
| | - Wendy M Murray
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States.,Shirley Ryan Ability Lab, Chicago, IL, United States.,Research Service, Edward Hines Jr., VA Hospital, Hines, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States
| |
Collapse
|
14
|
Tian R, Dewald JPA, Yang Y. Assessing the Usage of Indirect Motor Pathways Following a Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1568-1572. [PMID: 34343095 PMCID: PMC8372540 DOI: 10.1109/tnsre.2021.3102493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hallmark impairment in a hemiparetic stroke is a loss of independent joint control resulting in abnormal co-activation of shoulder abductor and elbow flexor muscles in their paretic arm, clinically known as the flexion synergy. The flexion synergy appears while generating shoulder abduction (SABD) torques as lifting the paretic arm. This likely be caused by an increased reliance on contralesional indirect motor pathways following damage to direct corticospinal projections. The assessment of functional connectivity between brain and muscle signals, i.e., brain-muscle connectivity (BMC), may provide insight into such changes to the usage of motor pathways. Our previous model simulation shows that multi-synaptic connections along the indirect motor pathway can generate nonlinear connectivity. We hypothesize that increased usage of indirect motor pathways (as increasing SABD load) will lead to an increase of nonlinear BMC. To test this hypothesis, we measured brain activity, muscle activity from shoulder abductors when stroke participants generate 20% and 40% of maximum SABD torque with their paretic arm. We computed both linear and nonlinear BMC between EEG and EMG. We found dominant nonlinear BMC at contralesional/ipsilateral hemisphere for stroke, whose magnitude increased with the SABD load. These results supported our hypothesis and indicated that nonlinear BMC could provide a quantitative indicator for determining the usage of indirect motor pathways following a hemiparetic stroke.
Collapse
|
15
|
Fauvet M, Gasq D, Chalard A, Tisseyre J, Amarantini D. Temporal Dynamics of Corticomuscular Coherence Reflects Alteration of the Central Mechanisms of Neural Motor Control in Post-Stroke Patients. Front Hum Neurosci 2021; 15:682080. [PMID: 34366811 PMCID: PMC8342994 DOI: 10.3389/fnhum.2021.682080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The neural control of muscular activity during a voluntary movement implies a continuous updating of a mix of afferent and efferent information. Corticomuscular coherence (CMC) is a powerful tool to explore the interactions between the motor cortex and the muscles involved in movement realization. The comparison of the temporal dynamics of CMC between healthy subjects and post-stroke patients could provide new insights into the question of how agonist and antagonist muscles are controlled related to motor performance during active voluntary movements. We recorded scalp electroencephalography activity, electromyography signals from agonist and antagonist muscles, and upper limb kinematics in eight healthy subjects and seventeen chronic post-stroke patients during twenty repeated voluntary elbow extensions and explored whether the modulation of the temporal dynamics of CMC could contribute to motor function impairment. Concomitantly with the alteration of elbow extension kinematics in post-stroke patients, dynamic CMC analysis showed a continuous CMC in both agonist and antagonist muscles during movement and highlighted that instantaneous CMC in antagonist muscles was higher for post-stroke patients compared to controls during the acceleration phase of elbow extension movement. In relation to motor control theories, our findings suggest that CMC could be involved in the online control of voluntary movement through the continuous integration of sensorimotor information. Moreover, specific alterations of CMC in antagonist muscles could reflect central command alterations of the selectivity in post-stroke patients.
Collapse
Affiliation(s)
- Maxime Fauvet
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Gasq
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital Rangueil, Toulouse, France
| | - Alexandre Chalard
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,California Rehabilitation Institute, Los Angeles, CA, United States
| | - Joseph Tisseyre
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Amarantini
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
16
|
Tonic stretch reflex threshold as a measure of spasticity after stroke: Reliability, minimal detectable change and responsiveness. Clin Neurophysiol 2021; 132:1226-1233. [PMID: 33867256 DOI: 10.1016/j.clinph.2021.02.390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine inter-rater reliability, minimal detectable change and responsiveness of Tonic Stretch Reflex Threshold (TSRT) as a quantitative measure of elbow flexor spasticity. METHODS Elbow flexor spasticity was assessed in 55 patients with sub-acute stroke by determining TSRT, the angle of spasticity onset at rest (velocity = 0°/s). Elbow flexor muscles were stretched 20 times at different velocities. Dynamic stretch-reflex thresholds, the elbow angles corresponding to the onset of elbow flexor EMG at each velocity, were used for TSRT calculation. Spasticity was also measured with the Modified Ashworth Scale (MAS). In a sub-group of 44 subjects, TSRT and MAS were measured before and after two weeks of an upper-limb intervention. RESULTS The intraclass correlation coefficient was 0.65 and the 95% minimal detectable change was 32.4°. In the treated sub-group, TSRT, but not MAS significantly changed. TSRT effect size and standardized response mean were 0.40 and 0.35, respectively. Detection of clinically meaningful improvements in upper-limb motor impairment by TSRT change scores ranged from poor to excellent. CONCLUSIONS Evaluation of stroke-related elbow flexor spasticity by TSRT has good inter-rater reliability. Test responsiveness is low, but better than that of the MAS. SIGNIFICANCE TSRT may be used to complement current scales of spasticity quantification.
Collapse
|
17
|
Chen Y, Yu S, Cai Q, Huang S, Ma K, Zheng H, Xie L. A spasticity assessment method for voluntary movement using data fusion and machine learning. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Tian R, Dewald JPA, Sinha N, Yang Y. Assessing Neural Connectivity and Associated Time Delays of Muscle Responses to Continuous Position Perturbations. Ann Biomed Eng 2020; 49:432-440. [PMID: 32705425 DOI: 10.1007/s10439-020-02573-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
Both linear and nonlinear electromyographic (EMG) connectivity has been reported during the expression of stretch reflexes, though it is not clear whether they are generated by the same neural pathways. To answer this question, we aim to distinguish linear and nonlinear connectivity, as well as their delays in muscle responses, resulting from continuous elbow joint perturbations. We recorded EMG from Biceps Brachii muscle when eight able-bodied participants were performing a steady elbow flexion torque while simultaneously receiving a continuous position perturbation. Using a recently developed phase coupling metric, we estimated linear and nonlinear connectivity as well as their associated delays between Biceps EMG responses and perturbations. We found that the time delay for linear connectivity (24.5 ± 5.4 ms) is in the range of short-latency stretch reflex period (< 35 ms), while that for nonlinear connectivity (53.8 ± 3.2 ms) is in the range of long-latency stretch reflex period (40-70 ms). These results suggest that the estimated linear connectivity between EMG and perturbations is very likely generated by the mono-synaptic spinal stretch reflex loop, while the nonlinear connectivity may be associated with multi-synaptic supraspinal stretch reflex loops. As such, this study provides new evidence of the nature of neural connectivity related to the stretch reflex.
Collapse
Affiliation(s)
- Runfeng Tian
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.,Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA. .,Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK, USA.
| |
Collapse
|
19
|
Yang Y, Sinha N, Tian R, Gurari N, Drogos JM, Dewald JPA. Quantifying Altered Neural Connectivity of the Stretch Reflex in Chronic Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1436-1441. [PMID: 32275603 DOI: 10.1109/tnsre.2020.2986304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-stroke flexion synergy limits arm/hand function and is also linked to hyperactive stretch reflexes or spasticity. It is implicated in the increased role of indirect motor pathways following damage to direct corticospinal projections. We hypothesized that this maladaptive neuroplasticity also affects stretch reflexes. Specifically, multi-synaptic interactions in indirect motor pathways may increase nonlinear neural connectivity and time lag between stretch and reflex muscle response. Continuous position perturbations were applied to the elbow joint when eleven participants with stroke generated two levels of shoulder abduction (SABD) torques with their paretic arm to induce synergy-related spasticity. Likewise, the perturbations were applied to eleven control subjects while performing SABD and elbow flexion levels matching the synergy torques in stroke. We quantified linear and non-linear connectivity and the corresponding time lags between perturbations and muscle activity. Enhanced nonlinear connectivity with a prolonged time lag was found in stroke as compared to controls. Non-linear connectivity and time lag also increased with the expression of the flexion synergy, as induced by greater SABD load levels, in stroke. This study provides new evidence of changes in neural connectivity and long-latency time lag in the stretch reflex response post-stroke. The results suggest the contribution of indirect motor pathways to synergy-related spasticity.
Collapse
|
20
|
Sinha N, Dewald JPA, Heckman CJ, Yang Y. Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation. Front Syst Neurosci 2020; 13:86. [PMID: 31992973 PMCID: PMC6971171 DOI: 10.3389/fnsys.2019.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
Coupling of neural oscillations is essential for the transmission of cortical motor commands to motoneuron pools through direct and indirect descending motor pathways. Most studies focus on iso-frequency coupling between brain and muscle activities, i.e., cortico-muscular coherence, which is thought to reflect motor command transmission in the mono-synaptic corticospinal pathway. Compared to this direct pathway, indirect corticobulbospinal motor pathways involve multiple intermediate synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs can lead to modulation of inter-spike intervals which produces cross-frequency coupling. This theoretical study aims to evaluate the effect of the number of synaptic layers in descending pathways on the expression of cross-frequency coupling between supraspinal input and the cumulative output of the motoneuron pool using a computer simulation. We simulated descending pathways as various layers of interneurons with a terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and iso-frequency coupling between the supraspinal input and the motorneuron pool output were computed using a novel generalized coherence measure, i.e., n:m coherence. We found that the iso-frequency coupling is only dominant in the mono-synaptic corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic direct and multi-synaptic indirect descending pathways showed that increased reliance on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances the dominance of cross-frequency coupling between the supraspinal input and the motorneuron pool output. These results provide the theoretical basis for future human subject study quantitatively assessing motor command transmission in indirect vs. direct pathways and its changes after neurological disorders such as unilateral brain injury.
Collapse
Affiliation(s)
- Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
21
|
Kumar D, Sinha N, Dutta A, Lahiri U. Virtual reality-based balance training system augmented with operant conditioning paradigm. Biomed Eng Online 2019; 18:90. [PMID: 31455355 PMCID: PMC6712808 DOI: 10.1186/s12938-019-0709-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/16/2019] [Indexed: 11/27/2022] Open
Abstract
Background Stroke-related sensory and motor deficits often steal away the independent mobility and balance from stroke survivors. Often, this compels the stroke survivors to rely heavily on their non-paretic leg during weight shifting to execute activities of daily living (ADL), with reduced usage of the paretic leg. Increased reliance on non-paretic leg often leads to learned nonuse of the paretic leg. Therefore, it is necessary to measure the contribution of individual legs toward one’s overall balance. In turn, techniques can be developed to condition the usage of both the legs during one’s balance training, thereby encouraging the hemiplegic patients for increased use of their paretic leg. The aim of this study is to (1) develop a virtual reality (VR)-based balance training platform that can estimate the contribution of each leg during VR-based weight-shifting tasks in an individualized manner and (2) understand the implication of operant conditioning paradigm during balance training on the overall balance of hemiplegic stroke patients. Result Twenty-nine hemiplegic patients participated in a single session of VR-based balance training. The participants maneuvered virtual objects in the virtual environment using two Wii Balance Boards that measured displacement in the center of pressure (CoP) due to each leg when one performed weight-shifting tasks. For operant conditioning, the weight distribution across both the legs was conditioned (during normal trial) to reward participants for increased usage of the paretic leg during the weight-shifting task. The participants were offered multiple levels of normal trials with intermediate catch trial (with equal weight distribution between both legs) in an individualized manner. The effect of operant conditioning during the normal trials was measured in the following catch trials. The participants showed significantly improved performance in the final catch trial compared to their initial catch trial task. Also, the enhancement in CoP displacement of the paretic leg was significant in the final catch trial compared to the initial catch trial. Conclusion The developed system was able to encourage participants for improved usage of their paretic leg during weight-shifting tasks. Such an approach has the potential to address the issue of learned nonuse of the paretic leg in stroke patients.
Collapse
Affiliation(s)
- Deepesh Kumar
- Indian Institute of Technology Gandhinagar, Gandhinagar, India. .,National University of Singapore, The N.1 Institute for Health, 28 Medical Dr., Singapore, 117456, Singapore.
| | - Nirvik Sinha
- Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Uttama Lahiri
- Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
22
|
Wang H, Huang P, Li X, Samuel OW, Xiang Y, Li G. Spasticity Assessment Based on the Maximum Isometrics Voluntary Contraction of Upper Limb Muscles in Post-stroke Hemiplegia. Front Neurol 2019; 10:465. [PMID: 31133969 PMCID: PMC6514055 DOI: 10.3389/fneur.2019.00465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/17/2019] [Indexed: 11/23/2022] Open
Abstract
Background: The assessment of muscle properties is an essential prerequisite in the treatment of post-stroke patients with limb spasticity. Most existing spasticity assessment approaches do not consider the muscle activation with voluntary contraction. Including voluntary movements of spastic muscles may provide a new way for the reliable assessment of muscle spasticity. Objective: In this study, we investigated the effectiveness and reliability of maximum isometrics voluntary contraction (MIVC) based method for spasticity assessment in post-stroke hemiplegia. Methods: Fourteen post-stroke hemiplegic patients with arm spasticity were asked to perform two tasks: MIVC and passive isokinetic movements. Three biomechanical signals, torque, position, and time, were recorded from the impaired and non-impaired arms of the patients. Three features, peak torque, keep time of the peak torque, and rise time, were computed from the recorded MIVC signals and used to evaluate the muscle voluntary activation characteristics, respectively. For passive movements, two features, the maximum resistance torque and muscle stiffness, were also obtained to characterize the properties of spastic stretch reflexes. Subsequently, the effectiveness and reliability of the MIVC-based spasticity assessment method were evaluated with spearman correlation analysis and intra class correlation coefficients (ICCs) metrics. Results: The results indicated that the keep time of peak torque and rise time in the impaired arm were higher in comparison to those in the contralateral arm, whereas the peak torque in the impaired side was significantly lower than their contralateral arm. Our results also showed a significant positive correlation (r = 0.503, p = 0.047) between the keep time (tk) and the passive resistant torque. Furthermore, a significantly positive correlation was observed between the keep time (tk) and the muscle stiffness (r = 0.653, p = 0.011). Meanwhile, the ICCs for intra-time measurements of MIVC ranged between 0.815 and 0.988 with one outlier. Conclusion: The findings from this study suggested that the proposed MIVC-based approach would be promising for the reliable and accurate assessment of spasticity in post-stroke patients.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Pingao Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xiangxin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Oluwarotimi Williams Samuel
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yun Xiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,The Rehabilitation Department, Shenzhen Sixth People's Hospital (Nanshan hospital), Shenzhen, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Mugler EM, Tomic G, Singh A, Hameed S, Lindberg EW, Gaide J, Alqadi M, Robinson E, Dalzotto K, Limoli C, Jacobson T, Lee J, Slutzky MW. Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial. Neurorehabil Neural Repair 2019; 33:284-295. [PMID: 30888251 DOI: 10.1177/1545968319834903] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Abnormal muscle co-activation contributes to impairment after stroke. We developed a myoelectric computer interface (MyoCI) training paradigm to reduce abnormal co-activation. MyoCI provides intuitive feedback about muscle activation patterns, enabling decoupling of these muscles. OBJECTIVE To investigate tolerability and effects of MyoCI training of 3 muscle pairs on arm motor recovery after stroke, including effects of training dose and isometric versus movement-based training. METHODS We randomized chronic stroke survivors with moderate-to-severe arm impairment to 3 groups. Two groups tested different doses of isometric MyoCI (60 vs 90 minutes), and one group tested MyoCI without arm restraint (90 minutes), over 6 weeks. Primary outcome was arm impairment (Fugl-Meyer Assessment). Secondary outcomes included function, spasticity, and elbow range-of-motion at weeks 6 and 10. RESULTS Over all 32 subjects, MyoCI training of 3 muscle pairs significantly reduced impairment (Fugl-Meyer Assessment) by 3.3 ± 0.6 and 3.1 ± 0.7 ( P < 10-4) at weeks 6 and 10, respectively. Each group improved significantly from baseline; no significant differences were seen between groups. Participants' lab-based and home-based function also improved at weeks 6 and 10 ( P ≤ .01). Spasticity also decreased over all subjects, and elbow range-of-motion improved. Both moderately and severely impaired patients showed significant improvement. No participants had training-related adverse events. MyoCI reduced abnormal co-activation, which appeared to transfer to reaching in the movement group. CONCLUSIONS MyoCI is a well-tolerated, novel rehabilitation tool that enables stroke survivors to reduce abnormal co-activation. It may reduce impairment and spasticity and improve arm function, even in severely impaired patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jon Gaide
- 1 Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
McPherson LM, Dewald JPA. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clin Neurophysiol 2019; 130:454-468. [PMID: 30771722 DOI: 10.1016/j.clinph.2019.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The flexion and extension synergies were quantified at the paretic elbow, forearm, wrist, and finger joints within the same group of participants for the first time. Differences in synergy expression at each of the four joints were examined, as were the ways these differences varied across the joints. METHODS Twelve post-stroke individuals with chronic moderate-to-severe hemiparesis and six age-matched controls participated. Participants generated isometric shoulder abduction (SABD) and shoulder adduction (SADD) at four submaximal levels to progressively elicit the flexion and extension synergies, respectively. Isometric joint torques and EMG were recorded from shoulder, elbow, forearm (radio-ulnar), wrist, and finger joints and muscles. RESULTS SABD elicited strong wrist and finger flexion torque that increased with shoulder torque level. SADD produced primarily wrist and finger flexion torque, but magnitudes at the wrist were less than during SABD. Findings contrasted with those at the elbow and forearm, where torques and EMG generated due to SABD and SADD were opposite in direction. CONCLUSIONS Flexion and extension synergy expression are more similar at the hand than at the shoulder and elbow. Specific bulbospinal pathways that may underlie flexion and extension synergy expression are discussed. SIGNIFICANCE Whole-limb behavior must be considered when examining paretic hand function in moderately-to-severely impaired individuals.
Collapse
Affiliation(s)
- Laura Miller McPherson
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Therapy, Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
McPherson JG, Stienen AHA, Schmit BD, Dewald JPA. Biomechanical parameters of the elbow stretch reflex in chronic hemiparetic stroke. Exp Brain Res 2018; 237:121-135. [PMID: 30353212 DOI: 10.1007/s00221-018-5389-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
We sought to determine the relative velocity sensitivity of stretch reflex threshold angle and reflex stiffness during stretches of the paretic elbow joint in individuals with chronic hemiparetic stroke, and to provide guidelines to streamline spasticity assessments. We applied ramp-and-hold elbow extension perturbations ranging from 15 to 150°/s over the full range of motion in 13 individuals with hemiparesis. After accounting for the effects of passive mechanical resistance, we modeled velocity-dependent reflex threshold angle and torque-angle slope to determine their correlation with overall resistance to movement. Reflex stiffness exhibited substantially greater velocity sensitivity than threshold angle, accounting for ~ 74% (vs. ~ 15%) of the overall velocity-dependent increases in movement resistance. Reflex stiffness is a sensitive descriptor of the overall velocity-dependence of movement resistance in spasticity. Clinical spasticity assessments can be streamlined using torque-angle slope, a measure of reflex stiffness, as their primary outcome measure, particularly at stretch velocities greater than 100°/s.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, 10555 W. Flagler St., EC #3171, Miami, FL, 33176, USA
| | - Arno H A Stienen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
McPherson JG, Ellis MD, Harden RN, Carmona C, Drogos JM, Heckman CJ, Dewald JPA. Neuromodulatory Inputs to Motoneurons Contribute to the Loss of Independent Joint Control in Chronic Moderate to Severe Hemiparetic Stroke. Front Neurol 2018; 9:470. [PMID: 29977224 PMCID: PMC6021513 DOI: 10.3389/fneur.2018.00470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
In chronic hemiparetic stroke, increased shoulder abductor activity causes involuntary increases in elbow, wrist, and finger flexor activation, an abnormal muscle coactivation pattern known as the flexion synergy. Recent evidence suggests that flexion synergy expression may reflect recruitment of contralesional cortico-reticulospinal motor pathways following damage to the ipsilesional corticospinal tract. However, because reticulospinal motor pathways produce relatively weak post-synaptic potentials in motoneurons, it is unknown how preferential use of these pathways could lead to robust muscle activation. Here, we hypothesize that the descending neuromodulatory component of the ponto-medullary reticular formation, which uses the monoaminergic neurotransmitters norepinephrine and serotonin, serves as a gain control mechanism to facilitate motoneuron responses to reticulospinal motor commands. Thus, inhibition of the neuromodulatory component would reduce flexion synergy expression by disfacilitating spinal motoneurons. To test this hypothesis, we conducted a pre-clinical study utilizing two targeted neuropharmacological probes and inert placebo in a cohort of 16 individuals with chronic hemiparetic stroke. Test compounds included Tizanidine (TIZ), a noradrenergic α2 agonist and imidazoline ligand selected for its ability to reduce descending noradrenergic drive, and Isradipine, a dihyropyridine calcium-channel antagonist selected for its ability to post-synaptically mitigate a portion of the excitatory effects of monoamines on motoneurons. We used a previously validated robotic measure to quantify flexion synergy expression. We found that Tizanidine significantly reduced expression of the flexion synergy. A predominantly spinal action for this effect is unlikely because Tizanidine is an agonist acting on a baseline of spinal noradrenergic drive that is likely to be pathologically enhanced post-stroke due to increased reliance on cortico-reticulospinal motor pathways. Although spinal actions of TIZ cannot be excluded, particularly from Group II pathways, our finding is consistent with a supraspinal action of Tizanidine to reduce descending noradrenergic drive and disfacilitate motoneurons. The effects of Isradipine were not different from placebo, likely related to poor central bioavailability. These results support the hypothesis that the descending monoaminergic component of the ponto-medullary reticular formation plays a key role in flexion synergy expression in chronic hemiparetic stroke. These results may provide the basis for new therapeutic strategies to complement physical rehabilitation.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - R Norman Harden
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
27
|
McPherson JG, McPherson LM, Thompson CK, Ellis MD, Heckman CJ, Dewald JPA. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Front Hum Neurosci 2018; 12:131. [PMID: 29686611 PMCID: PMC5900019 DOI: 10.3389/fnhum.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laura M McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Therapy, Florida International University, Miami, FL, United States
| | - Christopher K Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|